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ABSTRACT 
 
Non-interacting magnetization Taylor expansions are calculated in 2D and 3D at high external field according to the 
vibrational model. In this approach all dipoles are moved as a linear pendulum independent from each other. The 
temperature is taken into account according to the equipartition theorem, thus all particles have the same kinetic 
energy: 𝑘𝐵𝑇 2⁄  in 2D and 𝑘𝐵𝑇 in 3D. The expansions valid only at high external magnetic field due to the linearisation 
of initial differential equation. On the second part of this paper the Maxwell-Boltzmann distribution is taken into 
account to determine the probability density function of the angular velocity. The ratio of the particles which has zero 
angular velocity in 2D is the maximum, in 3D is zero. Therefore the theoretical prediction is in better agreement with 
the exact formula of magnetization in 2D than in 3D. In this approach the effect of negative magnetization is able to 
come into existence in the non-interacting fluidum. 
 
Keywords: Langevin function, vibrational model, non-interacting magnetization, linear pendulum, 2D and 3D 
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1. INTRODUCTION 
 
1.1. The Taylor expansions of initial magnetization 
 
The simplest magnetization formula ignores the influence of dipolar interaction between dipolar particles, 
take into account only the applied external magnetic field. In this case according to the Boltzmann 
distribution the average of the cosine value of angle between external field and the dipole is: 
 

〈cos𝜑〉 =
∫ cos𝜑  𝑒𝑒𝑒(𝑎 cos𝜑)𝑑Ω

∫𝑒𝑒𝑒(𝑎 cos𝜑)𝑑Ω
, (1) 

 
where 𝜑 is the angle between 𝐻 external field and 𝑚 strength dipole moment, 𝑎 = 𝑚𝑚 𝑘𝐵𝑇⁄ , and Ω 
denotes the orientation (𝑘𝐵: Boltzmann factor, 𝑇: temperature). The phrase „non-interacting” means the 
independent magnetization divided by saturated magnetization. In 3D this expression leads to the Langevin 
function [1]: 
 

〈cos𝜑〉3𝐷 = ℒ(𝑎) = coth 𝑎 − 1 𝑎⁄ . (2) 
 
In 2D the (1) can be written by dividing two Bessel functions [2]: 
 

〈cos𝜑〉2𝐷 = 𝐼1(𝑎) 𝐼0(𝑎)⁄ , (3) 
 
where 𝐼1 is the modified Bessel function of the first kind of first order and 𝐼0 is the modified Bessel 
function of the first kind of zero order. Performing the Taylor expansion of exponential function in the 
numerator and denominator of (1) centered at zero and executing the integrals (or performing the 
expansion of Bessel functions in case of 2D) the well-known expressions of the non-interacting 
magnetization can be written as: 
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〈cos𝜑〉2𝐷𝐻→0 =
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〈cos𝜑〉3𝐷𝐻→0 =
1
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420𝑎
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1
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93555𝑎

9−⋯. (5) 

 
These expressions are rewritable into iterational formula: 
 

〈cos𝜑〉2𝐷𝐻→0 =
∑ 𝑎2𝑛+1

𝑋𝑛
∞
𝑛=0

∑ 𝑎2𝑛
𝑌𝑛

∞
𝑛=0

, where 
𝑋0 = 2 
𝑌0 = 1 , and  

𝑋𝑛 = 𝑋𝑛−1(4𝑛2 + 4𝑛)
𝑌𝑛 = 𝑌𝑛−1(4𝑛2)            

, (6) 

 

〈cos𝜑〉3𝐷𝐻→0 =
∑ 𝑎2𝑛+1

𝑋𝑛
∞
𝑛=0

∑ 𝑎2𝑛
𝑌𝑛

∞
𝑛=0

, where 
𝑋0 = 1.5 
𝑌0 = 0.5 , and  

𝑋𝑛 = 𝑋𝑛−1(4𝑛2 + 6𝑛)
𝑌𝑛 = 𝑌𝑛−1(4𝑛2 + 2𝑛) , (7) 

 
moreover dividing by Taylor expansions: 
 

〈cos𝜑〉2𝐷𝐻→0 =
∑ 𝑎2𝑛+1

22𝑛+1(𝑛+1)!𝑛!
∞
𝑛=0

∑ 𝑎2𝑛
22𝑛𝑛!𝑛!

∞
𝑛=0

          and          〈cos𝜑〉3𝐷𝐻→0 =
∑ 2𝑎2𝑛+1

(2𝑛+1)!(2𝑛+3)
∞
𝑛=0

∑ 2𝑎2𝑛
(2𝑛+1)!

∞
𝑛=0

. (8) 

 
At high external field in (2) the coth(a) tends to 1 and performing the Taylor expansion in (3) when a tends 
to infinity the magnetization formulas lead to [3]: 
 

〈cos𝜑〉2𝐷𝐻→∞ = 1 − 1
2𝑎
− 1

8𝑎2
− 1

8𝑎3
− 25

128𝑎4
−⋯          and          〈cos𝜑〉3𝐷𝐻→∞ = 1− 1

𝑎
. (9) 

 
1.2. Dipole as a linear pendulum 
 
The equation of the magnetic dipole motion put into a static magnetic field is [4,5]: 
 

Θ𝜑̈ + 𝑚𝑚 sin𝜑 = 0, (10) 
 
where Θ is the moment of inertia calculated to the axis of symmetry of the dipole. After linearising this 
equation the natural frequency of the undamped, unexcited vibrational system is: 
 

𝜔0 = �𝑚𝑚 Θ⁄ . (11) 
 
This natural frequency applies to the real vibrational motion when the 𝜑0 amlitude is smaller than 
approximately 1°. Without linearising (10) the expressions 𝜑(𝑡) and 𝜑̇(𝑡) are pretty complicated [4,5].  
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1.3. The Maxwell-Boltzmann distribution to the angular velocity 
 
The rotational energy of particles follows the Maxwell-Boltzmann distribution [6]. In 2D the rotational 
degree of freedom of a dipole is one, in 3D it is two, hence the probability density functions of the angular 
velocity are: 
 

𝑓𝜑̇ = 𝑐
𝑍
𝑒𝑒𝑒 �− 𝑁2

2Θ𝑘𝐵𝑇
�   (2D)          and           𝑓𝜑̇ = 𝑐

𝑍
𝑒𝑒𝑒 �−𝑁𝑥2+𝑁𝑦2

2Θ𝑘𝐵𝑇
�,   (3D) (12) 

 
where 𝑍 is the partition function, 𝑐 is a normalizing constant, and 𝑁 signals the angular momentum. 
Performing the integrals and transformations, density functions of the angular velocity can be written as 
 

𝑓𝜑̇𝑑𝜑̇ = � 2Θ
𝜋𝑘𝐵𝑇

�
1 2⁄

𝑒𝑒𝑒 �− Θ𝜑̇2

2𝑘𝐵𝑇
� 𝑑𝜑̇   (2D)      and       𝑓𝜑̇𝑑𝜑̇ = Θ

𝑘𝐵𝑇
𝜑̇𝑒𝑒𝑒 �− Θ𝜑̇2

2𝑘𝐵𝑇
�𝑑𝜑̇.   (3D) (13) 

 
The maximum of the function in 2D is at zero, while in 3D the value is zero at zero (see Fig. 1). 
 

 
 

Figure 1. The curves of Maxwell-Boltzmann distribution of angular velocity distribution when the degree of freedom in 2D is one, 
in 3D is two (𝜣 𝒌𝑩𝑻⁄ = 𝟏) 

 
2. MAGNETIZATION FROM PENDULUM MOTION 
 
According to the equipartition theorem, the average kinetic energy of a particle per degree of freedom is 
𝑘𝐵𝑇 2⁄ . Taking into account the number of the rotational degree of freedom in 2D and 3D, respectively, 
this yields: 

1
2
𝜃〈𝜑̇2〉 = 1

2
𝑘𝐵𝑇   (2D)          and          1

2
𝜃〈𝜑̇2〉 = 2

2
𝑘𝐵𝑇.   (3D) (14) 

 
Nevertheless, supposing that the dipole is doing harmonic rotational motion [7] taking effect from the 
external magnetic field, the relation between the average and maximum value of angular velocity is 
〈𝜑̇2〉 = 𝜑̇𝑚𝑚𝑚

2 2⁄ . Using the expression 𝜑̇𝑚𝑚𝑚 = 𝜑0𝜔0 for the amplitude of vibrational motion leads to 
 

𝜑0 = �2𝑘𝑘
𝜔02𝜃

= �2
𝑎
   (2D)          and          𝜑0 = �4𝑘𝑘

𝜔02𝜃
= �4

𝑎
.   (3D) (15) 

 
 
 



Vol. 9  No. 1 

 
66 

 

It is worth to note that the same results are got to take notice as a starting point of the calculation the 
vibration energy instead of kinetic energy. In this way 
 

1
2
𝑠𝑡〈𝜑2〉 = 1

2
𝑘𝐵𝑇   (2D)          and          1

2
𝑠𝑡〈𝜑2〉 = 2

2
𝑘𝐵𝑇,   (3D) (16) 

 
where 𝑠𝑡 = 𝑚𝑚 is the torsion spring rate and the relation between the average angular displacement value 
and aplitude is 〈𝜑2〉 = 𝜑02 2⁄ . Consequently the dipole has a motion around the equilibrium position with 
𝜑0 amplitude and 𝜔0 natural frequency (equilibrium position means that the angle between dipole and 
external field is zero): 𝜑(𝑡) = 𝜑0 sin(𝜔0𝑡). The period of oscillation is 𝑇𝑝 = 2𝜋 𝜔0⁄ . The non-interacting 
magnetization value from the timing average of the external field directional component of dipole moment: 
 

〈cos𝜑〉 =
1
𝑇𝑝
� cos(𝜑0 sin(𝜔0𝑡))𝑑𝑑
𝑇𝑝

0
. (17) 

 
Performed the expansion of cosine function appear only even powers of sinus function. It is known that 
 

𝑠𝑠𝑠𝑛𝑥 =
1

2𝑛 �
𝑛
𝑛
2
� +

2
2𝑛�

(−1)�
𝑛
2−𝑘�

𝑛
2−1

𝑘=0
�𝑛𝑘� cos�(𝑛 − 2𝑘)𝑥�, (18) 

 
where 𝑛 is an even number. The second term of this expression vanishes performing the integral (17) to the 
whole period. Thus the following simple formula is obtained for the average angular displacement, which 
is valid for both 2D and 3D: 
 

〈cos𝜑〉 = � (−1)𝑛
𝜑02𝑛

22𝑛𝑛!2
∞

𝑛=0
, (19) 

 
and using (15) the expansions of non-interacting magnetization function are: 
 

〈cos𝜑〉2𝐷 = � (−1)𝑛
1

(2𝑎)𝑛𝑛!2 = 1 −
1

2𝑎 +
1

16𝑎2 −
1

288𝑎3 + ⋯
∞

𝑛=0
, (20) 

 

〈cos𝜑〉3𝐷 = � (−1)𝑛
1

𝑎𝑛𝑛!2
∞

𝑛=0
= 1 −

1
𝑎 +

1
4𝑎2 −

1
36𝑎3 + ⋯. (21) 

 
The first two terms equal to the first two terms in (9), thus one can say that at high 𝑚𝑚 𝑘𝐵𝑇⁄ , where the 
linearising of (10) is valid, (20) and (21) reproduce the results of the basic theory.  
 
3. THE NEGATIVE MAGNETIZATION 
 
According to (13) the Maxwell-Boltzmann distribution is able to apply to the angular velocity of dipoles. 
The angular velocity on x axes on Fig. 1 corresponds to the time average of angular velocity: 〈𝜑̇𝑖〉. The 
amplitude which belongs to a given 〈𝜑̇𝑖〉 average angular velocity: 
 

𝜑0𝑖 = 𝜑̇𝑖,𝑚𝑚𝑚 𝜔0⁄ . (22) 
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The average angular velocity is different according to Fig. 1 but the natural frequency and the period is the 
same for all dipoles at a given temperature. The relation between maximum and average angular velocity 
referring to a dipole which has a given 〈𝜑̇𝑖〉 average angular velocity is: 
 

〈𝜑̇𝑖〉 =
2
𝜋 𝜑̇𝑖,𝑚𝑚𝑚 . (23) 

 
Consequently the amplitude: 
 

𝜑0𝑖 =
𝜋
2
〈𝜑̇𝑖〉 𝜔0⁄ . (24) 

 
Using this expression in (19) the magnetization denoted by 〈𝜑̇𝑖〉 average angular velocity is: 〈cos𝜑〉𝑖. On 
Fig. 2 the values of 〈cos𝜑〉𝑖 are shown as a function of 〈𝜑̇𝑖〉 at the values of three different 𝑎 = 𝑚𝑚 𝑘𝐵𝑇⁄ . 
When 〈𝜑̇𝑖〉 → +0 the average angular displacement 〈cos𝜑〉𝑖 → 1. Increasing the average angular velocity 
the aplitude increases and the average angular displacement can turn into the negative zone. The dashed 
lines sign when the amplitude is greater than π, thus the linearized equation of motion (10) is not valid yet, 
because in this case the vibrational motion turn into rotational motion with altering angular velocity. 
Nevertheless the negative magnetization effect appears somewhere the aplitude is greater than π/2 and less 
than π, and exists when rotational motion occurs. Hence the positive values of the dashed lines on Fig. 2 
are necessarily incorrect. 
 

 
 

Figure 2. The average angular displacement as a function of the average angular velocity at three different values of mH/kBT 
 
The total magnetization from summation part magnetizations weighted by the Maxwell-Boltzmann 
distribution can be written as (see (13) and (19)): 
 

〈cos𝜑〉 = � 𝑓𝜑̇
∞

0
〈cos𝜑〉𝑖𝑑𝜑̇. (25) 
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Figure 3. The average angular displacement weighted by the Maxwell-Boltzmann distribution as a function of the average 
angular velocity at three different values of mH/kBT. The total magnetization is come from the integration of these functions 

 
On Fig. 3 the curves of part magnetizations are shown in 2D and 3D at three different values of 
𝑎 = 𝑚𝑚 𝑘𝐵𝑇⁄ . It seems when a is large the all particles have a positive part magnetization. The 
magnetization of non-interacting fluidum comes from the integration of Maxwell-Boltzmann distribution 
weighted part magnetizations. 
 
4. CONCLUSION 
 
In this paper the Taylor expansion expressions of magnetization of the non-interacting dipoles has been 
calculated in 2D and 3D on the basis of the vibrational model. The temperature was taken notice with the 
help of the equipartition theorem which provided the amplitude and the natural frequency of harmonic 
oscillation. Calculating the average of cosine value of angular excursion a compact formula was arisen for 
the independent, non-interacting magnetization. Due to the linearising of differential equation, the 
agreement between our theory and the exact formula is satisfactory only at high external field. Applying 
the Maxwell-Boltzmann distribution at angular velocity of dipoles, the results have shown that in a non-
interacting fluidum exist such particles which have negative magnetization. The main limit of the presented 
vibrational model is the linearising of (10). In the future an attempt will be made to perform the 
calculations without linerisation. 
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