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Abstract 

The current study was performed on a Hungarian area where the groundwater has been highly affected in the past 40 years by climate 

change. The stochastic estimation framework of groundwater as a spatiotemporally varying dynamic phenomenon is proposed. The 

probabilistic estimation of the water depth is performed as a joint realization of spatially correlated hydrographs, where parametric 

temporal trend models are fitted to the measured time series thereafter regionalized in space. Two types of trend models are evaluated. 

Due to its simplicity the purely mathematical trend can be used to analyze long-term groundwater trends, the average water fluctuation 

range and to determine the most probable date of peak groundwater level. The one which takes advantage of the knowledge of expected 

groundwater changes, clearly over performed the purely mathematical model, and it is selected for the construction of a spatiotemporal 

trend. Model fitting error values are considered as a set of stochastic time series which expresses short-term anomalies of the ground-

water, and they are modelled as joint space-time distribution. The resulting spatiotemporal residual field is added to the trend field, 

thus resulting 125 simulated realizations, which are evaluated probabilistically. The high number of joint spatiotemporal realizations 

provides alternative groundwater datasets as boundary conditions for a wide variety of environmental models, while the presented 

procedure behaves more robust over non-complete datasets. 
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INTRODUCTION 

The water body closest to the surface and mostly above the 

first confined zone is called shallow groundwater (herein-

after groundwater in this study). Groundwater is a charac-

teristic environmental element of alluvial lowlands. It is im-

portant on the one hand as a water source during the dry 

season for woody, as well as for deep-rooted vegetation, on 

the other hand, the vertically seeping groundwater means 

an important recharge for deep-water resources. Climate 

variability can have significant impacts on the groundwater 

(Treidel et al., 2012). These impacts are likely to be partic-

ularly severe when the watershed is located on an area that 

is predominantly disposed by the effects of altering envi-

ronmental conditions, such as the Great Hungarian Plain. 

As a consequence of climate change the annual distribution 

of the precipitation tends to become more and more ex-

treme (IPCC, 2013). These harmful processes can be en-

hanced by other stresses on the hydrological system, as may 

occur where there are large extractions from the watershed. 

Groundwater is vital to both environment and society, thus 

understanding how climate change and human activities 

may disturb regional water regime is exceptionally im-

portant for mitigating future water resources. 

The approximate state of the groundwater can be es-

timated by observing a temporal sequence of the ground-

water depth via an observation network operating over the 

study area. However, the design of the observation net-

work is critical and usually not enough dense to provide a 

clear view. Even the wells of the Hungarian measurement 

system, which can be considered much denser compared 

to other sensing networks worldwide, are located to cover 

20-40 km2 each. Thereby it is extremely important to se-

lect a proper method which enables accurate estimations 

of the groundwater state even from limited information of 

the measured sequences. 

Previous studies (Pálfai, 1994) have revealed that 

in the recent decades the groundwater of the western 

part of the Great Hungarian Plain, the so called “Sand 

Ridge” between the Danube and the Tisza rivers is par-

ticularly affected by groundwater changes (predomi-

nantly the discharge of water resources). Although 

these former studies reached different results regarding 

the ultimate causes, our GIS-based quantitative analy-

sis (Rakonczai and Fehér, 2015) successfully proved 

that the groundwater discharge is mainly influenced by 

altered climatic elements. 

Our current study set both theoretical and practical 

goals. First, a brand new stochastic approach for the trend 

and variability analysis of the groundwater regime is in-

troduced, considering water table as a spatiotemporally 

dynamic phenomenon. Second, we attempt to quantify the 

groundwater changes of the recent decade in South-East-

ern Hungary. 
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STUDY AREA 

The groundwater time series used in the current study con-

sist of daily measured (depth to surface) water levels over 

the study site. The data were provided by the Lower Tisza 

District Water Directorate. The analysis is performed on 

an approximately 8490 km2 study area in the South-East-

ern part of the Great Hungarian Plain.  

Groundwater depth measurements (given in cm) are 

available from 207 monitoring wells between 1/1/2005 

and 17/5/2015. The spatial density of the stations shows 

locally diverse spatial distribution (Fig. 1). The length of 

the time series varies from 382 to 3,779 days. Most of the 

hydrographs has at least three daily measurements, only 5 

of them show huge amount of missing data. There is no 

significant relationship between measurement density and 

spatial distribution. The area consists of three signifi-

cantly dissimilar units.  

 

Fig.1 The study site with the operating gauge network 

alongside the count of available data 

The western side is the eastern part of the so called Sand 

Ridge. This area is significantly affected by regional scale 

groundwater shortage in the last decades. Basin elevations 

range from 83 m on the Tisza valley to 143 m on the south-

west. The area is deposited by the River Danube (the process 

was completed approx. 20 – 30 thousand years ago), and most 

of the landscape is covered by several-meter thick blown 

sand. Thereby, in the depressions semi-bound sand dunes, 

salty meadows can be usually observed on the surface. Ac-

cording to the dominant wind direction, the characteristic NW 

towards SE flow direction of the surface waters is determined 

by these relatively shallow features. These beds, however, 

barely carry any water, even in longer time periods. 

Due to the elevated geomorphological position of 

the Sand Ridge, it is important to mention that groundwa-

ter resources can only be recharged by precipitation, since 

the opportunity of neither surface watercourses nor sub-

surface water flows is possible. This is the main cause of 

that more intense groundwater shortage which was ob-

served in the higher area since the end of the 1970’s when 

the amount of the annual rainfall significantly dropped for 

one and a half decade. The typical discharge was around 

2 metres, however on higher regions this could surpass 15 

metres. In the higher areas this unfavorable situation 

could not be normalized even after extensive rainy peri-

ods. In the lower parts of the ridge however, the ground-

water not just recovered from the water shortage, but the 

water level even increased thus sometimes caused harm-

ful surface floodings after persistent rainy periods. 

The eastern part of the study site belongs to the allu-

vial fan of the river Maros. Basin elevations vay between 

80 – 108 m. The landscape is slightly sloping towards 

west (to the river Tisza) and the north (to the river Körös). 

The former (approx. 2 – 18 thousand years old, Sümeghy, 

2015) river branches can be still observed more or less. 

Most of the area is constituted by good quality chernozem 

soils, but in the deeper parts alkaline vegetation is also 

common. Although groundwater is recharged primarily 

by precipitation, in this case the subsurface groundwater 

flow from higher regions plays significant role, through 

coarser, porous channel deposits of the former river beds 

encompass the area. 

The River Tisza flows southwards in the axis of the 

some 10-12 km wide central region. This landscape is a 

young alluvial plain, which was continuously built by the Ti-

sza with its sediments until in the middle of the 19th century 

the river regulations were completed. This area is the deepest 

part of the Great Hungarian Plain (as well as Hungary), rang-

ing from 75.8 m to 83 m. In the last one and a half centuries 

the river flows between dams. Occasionally the groundwater 

is connected to the Tisza but in common years, (when both 

low water levels and floods also occur) this kind of effect can 

be shown only within 5 km to the river. 

GROUNDWATER AS A DYNAMIC  

PHENOMENON 

Estimations of large scale and long groundwater hydro-

graphs are important boundary conditions of numerous 

environmental models. However, no sufficient, continu-

ous information is available about the state of the ground-

water table, thereby it has to be determined. 

Various forms of geostatistical approaches have 

been developed to map groundwater table from scattered 

water-observations solely (Delhomme, 1978; Aboufassi 

and Marino, 1983; Neuman and Jacobsen, 1984; Dunlap 

and Spinazola, 1984; Fehér, 2012). The first attempt 

which involved topography as supplementary data is 

based on the full cokriging system (Hoeksema et al., 

1989), and was later improved to solve multiple usability 

problems (Xu et al., 1992; Xianlin and Journel, 1999). 

Kriging with an external drift (KED) provides an alterna-

tive to apply soft data into groundwater estimation 

(Desbarats et al., 2001; Fehér, 2015). However, kriging 

with local means (Goovaerts, 1997), which is based on 

undermining the global regression of the groundwater and 

soft data, offers the least estimation error on some Hugar-

ian study sites (Fehér, 2015; Geiger, 2007). 

The above mentioned studies focus solely on the spa-

tial autocorrelation of an available, contemporaneous data 

thus consider interaction neither on temporal (within 
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groundwater time-series on every single wells) nor on spa-

tiotemporal (between spatially correlated hydrographs) do-

main. Commonly, the rarer the monitoring network is or the 

longer the missing data period is, the more important the 

selection of the appropriate estimation method is.  

Global structures of autocorrelation functions, 

thereby results of any geostatistical estimation are deter-

mined by (1) the spatial and/or temporal sampling struc-

ture and (2) the stationary covariance function that char-

acterize the relationship between any available observa-

tion (Journel, 1989). Resource estimations and analyses of 

dynamic natural processes are usually investigated by 

comparison of spatial patterns at different time instants 

(eg. Malvic and Zelenika 2014). However long-term ob-

servation networks rarely if ever provide complete da-

tasets, thus (1) covariance matrices of different sampling 

patterns differ significantly even if similar covariance 

functions are assumed and (2) ignorance of the local be-

haviour of the temporal process or a temporary extreme 

event (such as locally altering intensity of human activi-

ties) will cause significantly different estimation from the 

expected local process, thus result in false resource esti-

mation (Fehér, 2015). Though the observations are neither 

temporally nor spatially unique, the interpolation with 

missing data causes modification on the covariance ma-

trix of any selected kriging system. This leads to a some-

what semantic error, while attempting to relate groundwa-

ter levels at two different time instants. Consequently, 

groundwater maps, which are estimated with distinct data 

distribution are incomparable, hence inadequate for re-

source or flow analysis. Furthermore, the application of 

these data as boundary condition of any type of numerical 

models, leads to false outcomes. 

Numerical models are doubtlessly able to increase 

reliability of water table estimations by exactly defined 

physical relationships between groundwater and its influ-

encing factors. However, these approaches are computa-

tionally expensive, furthermore uncertainties of model pa-

rameterization, temporally incomplete knowledge of the 

varying environmental factors, and dynamic upscaling of 

different input datasets make difficult the application of 

such numerical models (Fehér, 2015). In addition, the in-

fluencing factors of groundwater level proceed both tem-

porally and spatially at different scales, so any spatial or 

temporal averaging or dynamic upscaling of these phe-

nomena would change the original spatiotemporal corre-

lations (Kyriakidis and Journel, 1999).  

Groundwater, however, can be characterized in a 

stochastic framework (Mucsi et al., 2013), by involving 

soft data into the estimation (Fehér, 2012, 2015; Geiger, 

2015), like digital elevation models, even if these models 

are not capable to explicitly represent dynamically chang-

ing relationships between groundwater estimate and a par-

ticular influencing process. 

Groundwater time series commonly exhibit both 

spatial and temporal autocorrelation. Early spatiotemporal 

estimations treated time simply as an additional (2D+1) 

dimension (Eynon and Switzer, 1983). But, even if spatial 

autocorrelation is considered constant at any time instant, 

temporal autocorrelation may significantly differ place to 

place, due to different local influencing factors. Conse-

quently, conventional interpolation approaches (including 

any type of 2D kriging algorithm) are inappropriate to 

handle this kind of joint spatiotemporal autocorrelation.  

Since the temporal domain of the groundwater ob-

servations is more densely sampled compared to the spa-

tial domain, the estimation of missing data can be more 

reliably carried out on the hydrographs. The well-in-

formed time domain can be easily exploited by either em-

ploying multivariate AR models (Hosung, 1994; Rétháti, 

1977a, b), generalized linear models (Gotway and Stroup, 

1997) or spectral analysis (Chatfield, 1996; Kovács et al., 

2004, 2011), though the results cannot be interpolated 

over the entire domain (Rouhani et al., 1992), thus these 

kind of spatial analysis are inappropriate to model ground-

water change. 

The spatiotemporal variability of the groundwater 

cannot be accurately characterized via the above men-

tioned, purely deterministic models, due to the deficient 

knowledge of the both spatially and temporally altering 

physical environment and limitations of observation capa-

bilities. Since model parameters (like land use, hydrome-

teorological conditions, irrigation, pumping, instant state 

of the canal network etc.) are varying over both space and 

time (see Fehér, 2015), long term hindcast type determin-

istic models, which consider  these influencing factors 

static, would make the false sense in the modeller that his 

all-rounder model is perfect.  

In this paper groundwater is considered as a joint reali-

zation of a set of spatially correlated time series Kyriakidis–

Journel (2001a, b), one for each grid node. Hydrograph 

model parameters are varying in space thus capturing space-

time interactions. The difference of observed groundwater 

depth from these local trend estimates are regarded as a real-

ization of a stationary spatiotemporal stochastic process. 

Geostatistical space-time models provide a frame-

work based on probability theory to analyze and forecast 

through spatial and temporal autocorrelation among avail-

able observations. In most cases a stochastic model by its 

own cannot explain unusual anomalies of the datasets, alt-

hough that can often be explained by some other influenc-

ing physical processes. 

The modelling of such dynamic processes brought var-

ious, but somehow similar approaches for numerous scien-

tific and engineering fields including hydrometeorological 

conditions (Armstrong et al., 1993), precipitation profiles 

(Kyriakidis et al., 2004), pressure-temparature relationships 

(Mardia and Goodall, 1993; Hottovi and Stechmann, 2015), 

variability of geophysical components (Handcock and Wal-

lis, 1994; Bogaert and Christakos, 1997a). Other similar ap-

proaches were implied in the estimation of soil moisture 

(Goovaerts and Sonnet, 1993; Papritz and Flührer, 1994; 

Heuvelink et al., 1997), diseases (Christakos–Hristopulos 

1998), environmental hazards (Mateua and Ignaccolo 2015), 

deposition of atmospheric particles (Kyriakidis, 2001b; 

Singh and Gokhale, 2015) and ecological dynamics (Hohn et 

al., 1993; De Iaco et al., 2015). 

These procedures are common in the sense that they 

separate the dynamic phenomenon into (1) spatiotemporal 

“trend” component, which expresses some long term pat-

terns and (2) the “residual” component that represents 
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some higher frequency fluctuations around the trend com-

ponent. The separation of the trend and residual compo-

nent reflects a subjective decision of the modeler and the 

available knowledge of the phenomena. The temporal 

trend can be characterized by deterministic parameters for 

each gauge (Dimitrakopoulos and Luo, 1997). The spatial 

correlation between temporal parameters represents every 

spatiotemporal interaction that exists between all of the 

influencing factors. The residual component is induced by 

some small scale, rapid or interim intense effects. 

Several studies quantified long term hydrograph pat-

terns of the Great Hungarian Plain. Recently performed 

time series analyses indicated annual periodicity on about 

97% of the gauges (Kovács et al., 2004, 2011), which is 

clearly explained by annual discharge-recharge cycle 

(Ubell, 1954). Another questionable 5 and 11 year-long pe-

riodicities were also designated, which might slightly be 

identified by multiannual periodicity of the precipitation 

(Kovács and Turai 2004). Another 14-17 year-long or even 

longer periodicities are also detected on a smaller set of hy-

drographs (Rónai, 1985; Rétháti, 1977), but the volume of 

these effects are negligible. It is important to highlight that 

despite these longer periodicities are “mathematically” re-

ally spotted, yet no clear, physical explanation of the under-

lying causes can be revealed, consequently, multi-annual 

periodicities must be treated carefully. 

The temporal profiles are spatially non-stationary, due 

to altering spatial intensity of the environmental factors. 

Closer to rivers hydrograph trends usually show fewer long-

term changes (Bezdán, 2011) and prone to mimic water level 

of the nearby river. The magnitude of the annual groundwa-

ter fluctuation on steeper terrain is less than close to perma-

nent watercourses or even on elevated reliefs. The primary 

reason for the latter is that groundwater continuously replen-

ished by gravitational flow through porous media from the 

ridges. By contrast, the only watersource is the periodically 

intense rainfall in elevated areas (Rakonczai, 2014). 

Meteorological conditions show significant annual 

and local variability in the Hungarian Plain, so groundwa-

ter trends can be hardly expressed by polynomial and si-

nusoidal functions. Long-lasting river level changes, al-

teration of land use, irrigation and several other factors 

trigger further high frequency, hardly modelable effects 

on the groundwater level (Négyesi, 2006). Therefore, it is 

very crucial to take the patterns of the non-stationary spa-

tial variability of the time series into account. 

THE SPATIOTEMPORAL FRAMEWORK 

Intrinsic hypothesis of the Simple Kriging requires a sta-

tionary variogram model, so that elimination of any rela-

tionship between groundwater observations and the spati-

otemporal coordinates (Deutsch and Journel, 1998). Com-

parison of resources of non-complete groundwater da-

tasets may undermine the strong correlation (ρ = 0.98) 

between groundwater elevation (above sea level) and to-

pography (Fehér and Rakonczai, 2012; Geiger, 2015). 

However, the regression function can also be interpreted 

as a locally varying spatial trend (Fehér, 2015), thus only 

the residuals of the regression model need to be estimated 

(Goovaerts, 2000). Instead of the spatial regression resid-

uals, hereinafter, for practical considerations, the ground-

water depth (to surface) is considered spatially detrended.  

Groundwater time-series are decomposed into spa-

tial and temporal trend components (Eq. 1) and the fitting 

error of the trend function. Thereafter the trend compo-

nents express TOPO spatial as well as E(Zut) = mu tem-

poral, smoothly varying expected patterns, and the rest is 

considered a frequently changing, stationary E(Rut) = 0 

residual component.  

Z𝐮(t) = TOPO + m𝐮(t) + R𝐮(t)                          (Eq. 1) 

Hydrograph trends can be expressed via (K + 1) deter-

ministic functions, which are defined by an initially chosen 

subjective model decision (Dimitrakopoulos and Luo, 1997). 

Most of the inspected hydrographs shows a downward trend, 

which was modelled via versatile polynomial functions. Spa-

tial patterns of each estimated bk trend coefficient theoreti-

cally expresses the locally and temporally varying intensity 

of some (known or unknown) fk background process. 

The spatial distribution of these partial trend compo-

nent intensities can be expressed in two steps. First, a gen-

eral function (Eq. 2) needs to be fitted individually on 

each hydrograph, then the given function parameters can 

be spatially estimated, considering their variograms.  

m(𝐮α, ti) = ∑ bk(𝐮α)fk(ti)
4
k=0   ti ∈ Tα               (Eq. 2) 

The spatial consistency for correct reconstruction of 

the trend field require either (1) to use identic variograms for 

each component regionalization or (2) to apply a Linear 

Model of Coregionalization (Deutsch and Journel, 1998; 

Fehér, 2012) or (3) to perform the estimation on an orthog-

onalized system, applying dimension reduction. In this 

study the Principal Component Analysis was applied for the 

orthogonalization of the trend components. A set of 125 se-

quential Gaussian simulations (Deutsch and Journel, 1998) 

of temporal trend PCA-values were generated on a 156 ×
106 grid with a cell size of 1 × 1 km2 for ensemble predic-

tion. The number of realizations was determined by the spa-

tial analysis of thickness change of the confidence intervals. 

The trend field for the entire spatiotemporal domain was 

thereafter revealed for each (𝐮α, ti) grid node using (Eq. 2), 

since estimated bk trend coefficients are given as a median 

type estimation of the inverse PCA transformation of each 

simulated random field PCA score realization. 

Since simple kriging is an exact interpolator, each 

trend estimate preserves its initial value at the exact gauge 

locations. Consequently, regionalized trend ensemble val-

ues at each gauge are quasi identical to the value provided 

by the fitted trend function at any time instant. In addition, 

the station specific, detrended, zero mean R𝐮(t) residual 

process is quasi identical to the exact fitting error of the 

trend model. The ultimate goal of the spatiotemporal re-

sidual simulation is to estimate these values.  

The first step is, to estimate spatial distribution of the 

temporal autocorrelation parameters (nugget, sill and range) 

individually for each variogram parameter, thus each resid-

ual time series is divided by its standard deviation thereby 

proofing its standard normal distribution that enables Sim-

ple Kriging to be used in a Sequnetial Gaussian Simulation 
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framework (Deutsch and Journel, 1998; Mucsi et al., 2013). 

The standard deviation values of the calculated residual se-

quences were then simulated over the study site. The ob-

tained residuals were back-transformed into the original 

data dimensions only after the stochastic simulation.  

For the sequential Gaussian simulation, a spherical 

variogram function was automatically fitted individually on 

each normally distributed residual time series. The obtained 

nugget, sill and range parameters were then co-regionalized 

over the study site, by considering their spatial relation-

ships. Here we chose a simple full cokriging method for the 

estimation (Goovaerts, 2000). In order to determine spatial 

autocorrelation of the gauges, the spatial variogram of the 

residuals was also modelled, via cross-validation (Isaaks 

and Srivastava, 1989). Thereafter the residuals were con-

sidered as joint-realization of a spatiotemporal stationary 

process. Subsequently sequential Gaussian simulation 

(Deutsch and Journel, 1998) was performed at each spatial 

coordinates with the appropriate spatial and temporal vari-

ogram parameters, thereby 125 temporal profiles were ob-

tained at each unsampled grid node. 

As the realizations of the residuals are obtained via 

conditional Sequential Gaussian Simulation and added to 

the estimated trend ensembles, 125 geostatistical spatio-

temporal distributions of daily groundwater levels were 

revealed. The 𝑆 =  125 alternative, equiprobable realiza-

tion enables the probabilistic characterization of both the 

regionalized groundwater and also some simulated trend 

components. The following indicators were applied in the 

current study: 

(a) At each node u the 𝑧(̅𝐮) E-type estimate (the arithme-

tic mean) of the S simulated values 𝑧(𝑠), 𝑠 = 1, … , 𝑆 is 

given as: 

𝑧̅(𝐮) =
1

𝑆
∑ 𝑧(𝑠)(𝐮),𝑆

𝑠=1     𝐮 ∈ 𝐷                               (Eq. 3) 

(b) At each node u the 𝜎(u) local standard deviation of 

the S simulated values 𝑧(𝑠), 𝑠 = 1, … , 𝑆 is written as: 

𝜎(𝐮) = √
1

𝑆
∑ 𝑧(𝑠)(𝐮)]2 −𝑆

𝑠=1 𝑧̅2(𝐮),    𝐮 ∈ 𝐷        (Eq. 4.) 

(c) As E-type values and standard deviations of any indi-

vidual grid node distributions are already revealed, the 

𝑃𝑟𝑜𝑏𝑐  (𝐮) confidence interval can be calculated in any 

𝑐 significance level. Thicker confidence interval indicates 

higher estimation uncertainty: 

𝑃𝑟𝑜𝑏𝑐(𝐮) = 𝑧̅(𝐮) ± 𝑍𝑐/2 ×
𝜎(𝐮)

√𝑆
                                 (Eq. 5) 

(d) c = 0 significance level of the confidence interval re-

veals the median-type estimate of the grid node estimation 

𝑀𝑑(𝐮) = 𝑧(̅𝐮) ± 𝑍0 ×
𝜎(𝐮)

√𝑆
                                        (Eq. 6.) 

(e) The local probability 𝑝𝑘(𝐮; 𝑧) of the grid node estima-

tion exceeds a given threshold can be revealed as: 

𝑝(𝐮,𝑧) =
1

𝑆
∑ 𝑖𝑘

(𝑠)(𝐮, 𝑧),𝑆
𝑠=1     𝐮 ∈ 𝐷                              (Eq. 7) 

where 𝑖𝑘
(𝑠)

(𝐮; 𝑧) is the indicator of 𝑧(𝑠)(𝐮), its value is: 

𝑖𝑘
(𝑠)

= 1, if 𝑧(𝑠)(𝐮) > 𝑧, otherwise 0. 

 

RESULTS 

The groundwater level is simulated as joint ensemble 

images of a set of spatially correlated time series. Each 

hydrograph is decomposed into a spatiotemporal trend 

and a spatiotemporal residual component. The analysis 

proceeds by first comparison of goodness of fit of 

different parametric trend functions, followed by the 

regionalization and spatial evaluation of the revealed 

trend coefficients and long term groundwater alteration on 

the site.  

Dimitrakopoulos and Luo, (1997) proposed three 

types of trend models which can be applied for time series 

modelling. The considered models satisfy both the 

tensorial invariance condition and provide a unique 

solution for the kriging system (Deutsch and Journel, 

1998). These models are constituted by the sum of 

different degrees of polynomial and Fourier components. 

In this study we compared each combination of models 

from first to third degree polynomial and first to third 

degree Fourier models. The resulting mean average fitting 

error is ranging from a significant 41 to 50 cm. Our 

analysis highlighted that the increase of the components 

does not necessary result a siginificant increase of the 

fitting performance. 

In this study we developed another model which 

involve some temporal pattern in the fitting process. The 

latter provided a 16-18 cm matching error, depending on 

the degree of the applied model parameters. 

Consequently, the latter is more suitable to express local 

dynamics of groundwater changes. Despite the significant 

matching error, the former model is still appropriate to 

interpret long-term differences of the groundwater 

dynamics. 

Trend modelling without a temporal pattern model 

Spectral analysis (Kovács et al., 2004, 2011) indicated 

annual cycle as dominant periodicity on the individual 

time series. Among analyzed function structures the first 

order polynomial (linear) function (Eq. 8) with annual 

periodicity provided besides very good function match, an 

easily interpretable result. 

 

𝑚(𝐮𝛼 , 𝑡𝑖) = 𝑏0(𝐮𝛼) + 𝑏1(𝐮𝛼)𝑡𝑖 + 𝑏2(𝐮𝛼) ∙ cos (
2𝜋

365.25
𝑡𝑖) 

+𝑏3(𝐮𝛼) ∙ sin (
2𝜋

365.25
𝑡𝑖) 

 

𝑚(𝐮𝛼 , 𝑡𝑖), 𝑖 ∈ 𝑇𝛼                                                     (Eq. 8)  

 

where 𝑏0(𝐮𝛼) characterizes the initial depth of the 

groundwater on 01/01/2005, whereas 𝑏1(𝐮𝛼) expresses 

long term recharge or discharge of the groundwater in the 

surroundings of any individual gauge.  

The 𝑎(𝐮𝛼) amplitude of annual periodicity express 

an expected groundwater fluctuation range and the 𝜙(𝐮𝛼) 

phase value designates the serial number of the date 

concerning to the highest groundwater level. These 

indicators are averaged over the considered 10-year 

period and both are expressed by 𝑏2(𝐮𝛼) and 𝑏3(𝐮𝛼) Fou-

rier components:  
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𝑎(𝐮𝛼) = √[𝑏2(𝐮𝛼)]2 + [𝑏3(𝐮𝛼)]2                   (Eq. 9) 

𝜙(𝐮𝛼) = tan−1 (
𝑏3(𝐮𝛼)

𝑏2(𝐮𝛼)
)                                   (Eq. 10) 

The 𝑏𝑘(𝐮𝛼) intensity coefficients for each gauge were 

calculated individually by Ordinary Least Squares 

algorithm. Note that the selected ordinary least squares 

(Searle, 1971) algorithm is a subjective model decision 

which completely determines the trend component 

estimation. The resulting components are thereafter 

regarded as exact data and estimated individually by 

sequential Gaussian Simulation (Deutsch and Journel, 

1998; Mucsi et al., 2013) and evaluated later. The 

analysis of the correlation does not indicate any 

significant relationship among component pairs, unless 

some quasi relation between long term linear trend and 

periodicity. In practice this may indicate the 

relationship between low annual periodicity and a deep 

water level or high annual periodicity with lower 

altitude.  

Trend analysis and stochastic simulation of the ground-

water using a temporal pattern 

The former chapter pointed out that elementary 

polynoms and sinusoidals provide poor efficiency in 

representation of frequent and uncommon hydrograph 

divergences by annually predicted periodicity and long 

term trends. In the forthcoming chapter a more accurate 

approach is presented. This chapter is based on the 

theory that a set of influence factors that affect large 

scale trend of the groundwater, are represented on 

every single hydrograph, while their intensity is 

varying over the site under study. The analysis begins 

with modelling of a common profile. This profile 

describes the most likely pattern, thus resulting 

minimal fitting error on most of the time series.  

First, this profile can be a particular auxiliary 

data, for example satellite gravimetry (Gravimetry 

Recovery and Climate Experiment – GRACE, eg. 
Wardlow et al., 2016). Second, an intrinsic solution 

might be a series of arithmetic means or medians of 

time instants as it is presented hereafter. The joint time 

series model can be calculated in three subsequent 

steps: 

1. Shifting every single time series by its mean value 

(normalization) 

2. Dividing every single time series by its standard de-

viation (standardization) 

3. Eventually, standard-normal values of different time 

series that belong to the similar time instant are con-

sidered as a statistical set, whose arithmetic mean or 

median can be calculated. The series of these values 

constitute the finally established joint time series 

model (Fig. 2). 

The obtained joint model thereafter can be 

successfully fitted to the majority of hydrographs, using 

affine transformations (rotation, translation, scaling) and 

Fourier modulations (phase shifting). Note that arithmetic 

mean is more sensitive to outliers that are likely present in 

the dataset, additionally median is a more robust method if 

the statistical distribution of a set is non-normal. This way 

median over-performs the arithmetic mean, even if it does 

not appear on the fitting error comparison significantly. 

The task is then to determine proper transformation 

parameters for every single 𝐮𝛼 gauge:  

𝑚(𝐮𝛼 , 𝑡𝑖) = ∑ 𝑏𝑘(𝐮𝛼)𝑓𝑘(𝑡𝑖)

𝐾

𝑘=0

  𝑡𝑖 ∈ 𝑇𝛼 

= 𝑏0(𝐮𝛼) + 𝑏1(𝐮𝛼)𝑀𝑑(𝑡𝑖) + 𝑏2(𝐮𝛼)𝑡𝑖

+ 𝑏3(𝐮𝛼) ∙ cos (
2𝜋

12
𝑡𝑖)     + 𝑏4(𝐮𝛼)

∙ sin (
2𝜋

12
𝑡𝑖) 

𝑚(𝐮𝛼 , 𝑡𝑖), 𝑖 ∈ 𝑇𝛼                                                           (Eq. 11) 

where 𝑏0(𝐮𝛼) indicate translation by y-axis, 𝑀𝑑(𝑡𝑖) 

equals to the ith value of the above discussed joint median 

time series model (Fig. 2). The joint time series is 

modulated by 𝑏1 intensity along y-axis. 𝑏2(𝐮𝛼) parameter 

defines the rotation of the temporal trend profile, 𝑏3(𝐮𝛼) 

and 𝑏4(𝐮𝛼) expresses the phase shifting along x-axis, 

thereby adjusting station specific differences of the annual 

groundwater phase. Note that higher order polynomials do 

not increase fit performance significantly, but their 

application would unnecessarily complicate the analysis.  

The 𝑏𝑘(𝐮𝛼) intensity coefficients were calculated 

for each gauge individually by non-linear least squares 

(Gauss-Newton) algorithm. Note that the selected non-

linear least squares (Searle, 1971) algorithm is a 

subjective model decision thereby completely determines 

the trend component estimation. The resulting 

components are thereafter regarded exact data. Although 

 
Fig. 2 The applied joint median type time series model compared to a satellite gravimetry sequence (dimensionless units) 
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a very good fitting performance is achieved, the temporal 

trend model does not represent each hydrograph similarly. 

The proportion of the explained standard deviations (Fig. 

3) shows that some hydrographs can not be modelled well 

locally. In these cases, the residual model will express the 

proportion that does not fit to the local trend. 

 

Fig. 3 Proportion of the explained standard deviation by gauge 

Mathematical interpretation of the trend functions 

The study proceeded by analysis of three characteristic 

hydrographs (Fig 4.). Limited information is available on 

Kecskemét gauge at the initial period. This well is located 

in an elevated area of the Sand Ridge, close to an urban 

area. In the initial period the groundwater seems shallow 

related to other time instants, until it unexpectedly drops 

by 4 metres in 2007. This deep state does not change until 

an extreme precipitation period in 2010. It can be also 

recognized, that the water level does mimic long range 

trend pattern only when it is not deeper than 150 cm. 

Csánytelek metering station follows the global trend until 

the end of 2010, thereafter the groundwater suddenly 

drops by 80 cm, while the hydrograph shape is still almost 

identical to the global trend model. Probably the 

precipitation this time still recharges groundwater with 

unchanged intensity until the water level is restored to the 

global trend in the winter of 2012—2013. The sudden 

discharge might be due to some anthropogenic inventions 

around the gauge. The well near Hódmezővásárhely 

shows uninterrupted groundwater trend. Analyzing long 

term trends, Hódmezővásárhely station is permanent, 

Kecskemét observator indicates increasing whereas the 

Csánytelek station shows a downward trend. Weak 

periodicity can be recognized in Kecskemét well in 

contrast to the other gauges introduced.  

As shown in Fig 4. both fitting approach can 

represent long term tendencies just fine, whereas median 

based matching can reproduce hectic patterns of the 

groundwater dynamics better. While annual periodicity 

can somehow be reproduced, sudden uplifting of the 

groundwater around 2010 and 2011 can be hardly handled 

by pure Polinomial – Fourier models, due to extreme 

precipitation conditions (Szalai et al., 2012). The 

approach implementing a median type temporal pattern 

provides definitely a more sophisticated solution 

 

Fig. 4 Comparison of some characteristic groundwater time series (red) and their calculated temporal trend functions using purely mathematical 

(right column) and median type temporal pattern (on the left). W and D indicate wet or dry periods, whereas + means an extreme event. 
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compared to the one based on solely mathematical 

functions. Consequently, the median type model is very 

efficient in the estimation of missing observations. 

By contrast, the purely Polynomial – Fourier type 

method is capable to interpret long-term (10 year) average 

groundwater tendencies for each individual gauge. The 

determined trend model parameters differ from gauge to 

gauge which enables to estimate long-term groundwater 

tendencies, by spatial interpolation of the appropriate 

model parameters. Through the analysis of the 1-year-

long trend of every single observation of a hydrograph is 

represented by similar weight, consequently the fitted 

trend is not too sensitive to a small amount of outliers, 

rather more to the long period of missing data. In the 

present case the main analyzed factors (slope, fluctuation 

range and the date of the typical date of the highest water 

level can be determined by these restrictions. 

Spatiotemporal estimation of the groundwater level 

Spatiotemporal estimation of the groundwater is performed 

by sequential Gaussian simulation (Deutsch and Journel, 

1999; Mucsi et al., 2013) of median model parameters. 125 

equiprobable realizations were generated thus enabling 

geostatistical evaluation of the results. Cross covariance 

matrix of the given 𝑏𝑘 parameters (not presented) 

highlighted some discrepancy among parameters, thus 

principal component analysis was performed to project 

them into 𝑥𝑘 orthogonal planes. In the forthcoming step a 

spatial estimation of the components was reconstructed 

from these orthogonal planes, and the values of the 

appropriate grid node alongside temporal coordinates were 

substituted into Eq. 11. The analysis is proceeded by 

spatiotemporal geostatistical simulation of residual 

components. The temporal hyperparameters are modelled 

automatically via spherical model and regionalized by 

simple cokriging. The spatial variogram parameters are 

modelled via cross-validation.  

The stochastic component of the groundwater at most 

cases characterized by at least a half-year-long temporal 

range, which represents the length of the autocorrelation 

within the hydrograph. Consequently, a half-year-long 

sampling interval would be enough to make good 

estimations on the stochastic origin changes of the 

groundwater.  

The relatively small standard deviation values 

indicate that the applied temporal trend function was very 

effective, whereas the low value of temporal sills represents 

the portion of the autocorrelation function which can be 

expressed by the applied spherical model. The higher 

volume means the less randomness of the time series. 

Eventually, 125 equiprobable realizations of time se-

ries were generated for each spatial grid node using 

sequential Gaussian simulation (Kyriakidis, 2001a). The 

results are added node-by-node to the Median-based 

temporal model realizations. These joint realizations were 

finally evaluated geostatistically by Eq 3. – Eq. 7. The 

multiple generated realizations made enable to 

probabilistically characterize (1) temporal change of 

volume, (2) estimation uncertainty, (3) spatial pattern, and 

(4) gravitational flow of the simulated groundwater and 

evaluate its environmental effects. 

DISCUSSION  

The investigated 2005-2015 period is very interesting 

from the hydrometeorological point ofview. Since the 

beginning of the detailed meteorological measurements 

(more than 100 years ago), the two highest and also the 

lowest precipitation volumes have been measured during 

the analyzed period in Hungary. The spatial average of the 

arrived precipitation over Hungary was 938 mm in 2010, 

but just 407 mm in the subsequent year. At the beginning 

of the investigated period, the precipitation exceeded the 

multi-annual average (note that 2005 was the second 

rainiest year), but due to the preceding dry period, 

groundwater resources yet showed significant deficit 

(compared to preceding decades) on the investigated site 

(Fig. 5). During the four subsequent dry years (alongside 

the well-defined annual periodicity), the depletion of 

groundwater resources occurred. The volume of the water 

shortage on the study site is at least 3 km3. 

In the very rainy year of 2010 the water shortage of the 

previous years not just recharged, but a significant water 

surplus was generated. Consequently, inland excess water 

occured in multiple areas, as a result of the increase of the 

groundwater levels. Right after an extremely wet year as an 

effect of an extremely dry year, a significant groundwater 

shortage was generated again. 2013 and 2014 were again 

rainier than the average, thus groundwater resources 

recharged again to the stage where they were 10 years ago. 

We found that groundwater discharge primarily 

affected the higher altitude areas in the preceding 40 years. 

 

Fig. 5 Estimated groundwater resources related to the average of 2005-2015 versus precipitation related to the average of 1970-2000 
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However, we recognized that during the investigated 10-year-

long time period, a downward tendency continued on the 

study site, but, at the same time, together with long-term 

trends, an exciting thing was observed: in the following years 

the depletion is more intensely affected the lower altitudes 

(Fig 6.). 

At first sight this fact can be hardly explained, but it 

has a very clearly identifiable cause: in the recent years the 

characteristic spring and early summer floods of the Tisza 

River are absent. The river stepped out from its bed only 

once for a short time (in May 2013) between the spring of 

2011 and the end of 2015. Nearly three years ago its water 

level was really deep, in spite of the Serbian river damming. 

The underground water flow probably increased towards 

the river, due to the permanent low water level. Due to the 

reverse flow direction in general case in a particular part of 

the year (when the Tisza is flooding), the groundwater 

resources can recharge some km wide along the river. This 

has importance not only because of the recharge of the 

water resources but also because of the tendency of 

minimal groundwater levels too. Indeed, if the groundwater 

level close to the river decreases, the underground water 

flow from several-meter high area towards the river 

possibly increases. This may explain the observed 

groundwater discharge on transient altitude zones. 

A possible reason may arise the decreasing infiltration 

due to continuously developing wastewater sanitation 

system, however its effect should be more significant in a 

longer time period. Not surprisingly, due to the foregoing, 

extreme steep, a decisively downward trend can be 

experienced on the hydrographs along the River Tisza. 

Locally such steep down- or upward trends can be 

experienced often, that hydrographs of the neighboring 

gauges absolutely do not confirm. These are probably 

consequences of a specific anthropogenic effect (like, 

exploitation of irrigation water from groundwater due to 

serious drought), long-lasting floods or inland excess water. 

In the next step we analyzed average water level 

changes of the hydrographs from 2005 to 2015. Gauges 

located close to the Tisza River show the highest 

fluctuation within a year (Fig. 7.). On the alluvial fan of 

the Maros River slightly smaller, on the central area of the 

Sand Ridge some minimal water fluctuation can be 

detemined. Note, that these values are averaged to the 

whole analyzed 10 years (Fig. 4 D, E, F), however 

interannual values significantly diverge from the 

multiannual average. The average water fluctuation range 

in the observed area mostly can be determined within a 10 

cm confidence interval, however the highest and lowest 

uncertainties were also observed along the Tisza river. 

Note that the lowest uncertainty area around Szeged (a 

city lying in the southern central area) are probably 

affected by the effects of the urban area. 

The average date of the highest groundwater level is 

also determined in the 10-year long time series. As awaited, 

this pike value can be expected in most cases in March and 

April (Fig. 8.), however it can be determined with high 

uncertainty (with 30-60 day wide confidence interval). At 

multiple locations significantly different pike time moments 

can be experienced. This may refer to water inundation. 

Our analysis indicated that the least groundwater 

was stored on 12/10/2009, and the most was available on 

24/03/2011 (Fig. 5). Accordingly, the water resource 

 

Fig. 6 Average annual change of groundwater in cm (A) and probability of the groundwater discharge over the 2005-2015 period (B) 

 

Fig. 7 Estimated groundwater fluctuation range averaged over 2005-2015 (A) and the estimation uncertainty expressed in cm (B) 
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shows cca. 5.5 km3 fluctuation (discharge) in one and a 

half years. The groundwater level map of these two 

moments is illustrated in Fig. 9. Extremely low 

groundwater level can be seen in 2009 on the western site, 

whose spatial pattern draws well the Sand Ridge. In 

contrast, the highest water level can be seen not along the 

Tisza River, as it was expected, but half way between the 

Sand Ridge and the river. This has two possible reasons: (1) 

the river plays a role as a “drainage channel”, thereby tapp-

ing the water resources from its neighborhood, and (2) the 

water resources are significantly replenished by 

gravitational flow from the Sand Ridge even in drought 

periods. The relatively higher water levels of the eastern 

part of the study site can be considered similarly as a result 

of uplifting underground flows through former water beds. 
 

The situation in 2011 is at least as interesting as the 

above explained. On the area of the Sand Ridge some 2-3-

meter-deep water levels evolved, which means 2-meter 

recharge there. However, from agricultural perspective a 

very harmful situation occurred. On most of the site, the 

water depth was shallower than 1 meter, and in worst cases 

it inundated the surface. For example, in the eastern zone of 

the Sand Ridge, the subsurface water flow from the higher 

areas elevated the groundwater level insomuch that it 

caused floodings on the ground. The pattern of the 

groundwater on the former alluvial fan of the Maros river 

quasi designate the former main river beds, probably 

attributable to the the permeable bed deposits. 

CONCLUSION 

The methodology originally proposed by Kyriakidis and 

Journel (2001) has been improved to the stochastic 

analysis of non-complete, daily observed groundwater 

levels on a South-Eastern Hungarian site.  

Groundwater hydrographs are considered spatially 

correlated due to the similar long-range background 

processes. The well-informed time domain was 

capitalized to improve reliability of a spatiotemporal 

estimation. The simulated hydrographs provide a 

probabilistic framework to estimate and evaluate both 

temporal and spatial patterns, furthermore, changes of 

 

Fig. 8 Estimated date of the pike groundwater level averaged over 2005-2015 (A) and the estimation uncertainty expressed in days (B) 

 

Fig. 9 Stochastic evaluation of 125 joint spatio-temporal stochastic simulation. E-type estimation of the groundwater depth in 12/10/2009 

(A), in 24/03/2011 (B) and the probability of the groundwater deeper than 2 meters in the similar time instants (C and D respectively) 
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available water resources on the site alongside the space-

time uncertainty of the estimations. The methodology can 

be well supplied to determine spatial and temporal 

patterns of the groundwater resources. 

After the 1970s in Hungary, a serious groundwater 

discharge had occurred on the Sand ridge, between the river 

Danube and the Tisza. In some particular sites this 

depletion seems irreversible. The main causes are attributed 

to water extraction and the increasing area of forests. 

Nevertheless, our study shows that in a decisive part of the 

area, besides groundwater depletionc the meteorological 

(and climatic) changes can be identified. Specifically, in the 

whole Danube-Tisza interflow, whose area is about twice 

as large as the area of the western part of our study site (to 

the west of the Tisza river), cca. 2 km3 of potable water was 

exploited in the recent 40 years, while the effect of a 

specific drought year could exceed this volume. 

Though, instead of the continuously cumulating 

effect of water exploitation, the resource trend pointed to 

the close relationship with rainfall conditions. 

Investigations on the other hand highlighted indirect 

(stealthy) effects of climate change. Due to the decrease 

of the arriving precipitation on the Tisza catchment, the 

water resources of the river were reduced. This also had a 

negative effect on the groundwater resources. 
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