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Abstract 

Tree ring width is influenced by several internal and external factors, among which climate became one of the most dominant due to the 

altering conditions and patterns of precipitation and temperature. The study aims to analyse the interrelationship between tree ring-width 

and the dominant environmental parameters in a landscape exposed to water scarcity in the past decades due to climate change and human 

interventions.  Scots pine (Pinus sylvestris), black locust (Robinia pseudoacacia) and white poplar (Populus alba) plantations were sampled 

to reveal their exposure to climatic forcing and water scarcity (different water availability). Correlation and similarity analysis were carried 

out to compare the calculated ring-width indices to climatic parameters and aridity indices. Tree ring sensitivity was assessed to reveal the 

impact of water scarcity on yearly ring-growth. Spatial overlapping of significance levels and mean sensitivity with the hydrological 

changes of the past decades were evaluated to reveal presumable spatial differences of the investigated samples. In the study area (South 

Danube-Tisza Interfluve) droughts and the deep groundwater table had both impacts on tree growth. The spectacular decrease of ring-

width corresponds to the drought years determined by the investigated aridity indices. The relationship between the climate parameters 

and the ring-widths varies spatially with the changing site conditions. The highest level of correlation coefficients was experienced in areas 

with the lowest level of water availability. Ring-width sensitivity assessments showed an increasing tendency of sensitivity when compar-

ing the consecutive decades, except for samples with favorable water availability.  
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INTRODUCTION 

Recent climate change influences the species distribution 

and tree growth in many regions of Europe (Lenoir et al., 

2008; Way and Oren, 2010) and due to the projected 

changes in climate extremities further impacts are ex-

pected (Mátyás, 2010; Lindner et al., 2014). Tree re-

sponses depend on both internal (species characteristics) 

and external (local site conditions) factors (Fritts, 1976). 

Climate change results in both positive and negative re-

sponses on forests, e.g. drought-induced increase of mor-

tality and species range retraction (Allen et al., 2010; 

Hlásny et al., 2011), increased risk of forest fires 

(Venäläinen et al., 2014), and increased productivity at 

higher elevations and latitudes (Jolly et al., 2005). Due to 

the experienced impacts of the past decades, there is an 

increased need for the exact knowledge on how and to 

which extent the factors influence the functioning of the 

environmental systems.  

Consistent with global and continental trends an in-

creasing trend of the regional temperature was experienced 

in the Carpathian Basin. There is also a rise in the regional 

intensity and frequency of extreme precipitation, while the 

total precipitation has decreased (Bartholy and Pongrácz, 

2007). As a result, the area has been increasingly exposed 

to hydro-climatic extremes e.g. drought, inland excess wa-

ter, high magnitude flood (Pálfai and Herczeg, 2011; 

Mezősi et al., 2014). According to regional climate model 

predictions, more areas will face increasing temperature 

and changing precipitation conditions (Bartholy, 2011; 

Blanka et al., 2013), and the further increase of the hydro-

climatic extremes is also projected (Mezősi et al., 2014). 

The relation between tree ring growth and climatic 

parameters was investigated for several species in Hun-

gary. The impact of precipitation on Turkey oak (Quercus 

cerris) was investigated by Szabados (2008), where tree 

rings were sensitive to the annual changes of precipita-

tion, furthermore precipitation from April to June proved 

to be the most important period of tree growth. Kern et al. 

(2013) carried out separate investigation on early and late-

wood width of Pedunculate oak (Quercus robur), where 

the correlation analysis revealed relatively strong re-

sponse to growing season precipitation for both, and the 

strongest correlation was found with the precipitation to-

tal from November of the year preceding the tree ring 

growth to August of the growth year. The impact of cli-

mate change on beech (Fagus sylvatica) was assessed by 

Garamszegi and Kern (2014), who identified late spring-

early summer precipitation as the primary climatic factor 

governing the beech growth. The authors indicated no ev-

idence of a distinct decline in radial increment, but a sig-

nificant increase in climatic impact on growth including 

probable changes and shifts in the vegetation period. Sza-

bados et al. (2012) analysed black locust (Robinia pseu-

doacacia L.) samples from Nyírség region, and found the 
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precipitation of May-July period, especially the precipita-

tion in May as the most determinant for tree increment.  

The increasing temperature of the vegetation period has 

negative impact on tree growth. 

The consequences of climate change and the anthro-

pogenic activities (e.g. water drainage, water exploitation) 

contributed to groundwater table decrease in significant 

part of the Great Hungarian Plain (Pálfai, 1994; Kuti et 

al., 2002). The highest lowering is experienced in the 

Danube-Tisza Interfluve, where the missing groundwater 

resource is approximately 6-9 km3 in dry years that almost 

equals to the annual water consumption of Hungary (Ra-

konczai, 2011, 2014). Several studies investigated the 

causes and the consequences of this phenomenon in the 

past 3 decades and estimated the role of the natural and 

anthropogenic factors. Nowadays, the natural factors (de-

creasing precipitation, increasing temperature and evapo-

transpiration) are assigned as the most dominant contrib-

uting parameters to the phenomena, especially on the 

higher-elevated part of the Interfluve (Völgyesi, 2006; 

Szanyi and Kovács, 2009; Rakonczai, 2014). The water 

scarcity became the most dominant limiting factor for 

vegetation in this region and results in changes of wetland 

habitats (Biro et al., 2007; Deák, 2010; Ladányi et al., 

2010; Rakonczai, 2011) and decreased forest productivity 

determined by remote sensing (Kovács, 2007). The 

knowledge of forest responses to different hydro-climatic 

changes in this region is scarce.  

 This study aims at the investigation of the inter-

relationship between tree ring-width and t dominant en-

vironmental parameters by correlation analysis of time 

series and by the assessment of their spatial distribu-

tion. The study area is highly exposed to water scarcity, 

thus the main question is how tree-ring sensitivity is 

influenced by the different availability of water.  

STUDY AREA 

The study area is located between the Hungarian sec-

tions of the Danube and Tisza rivers in the Carpathian 

Basin (Fig. 1). The area developed of fluvial sediments, 

the ancient alluvial fan of the Danube River (Borsy 

1989). The surface is covered by blown sand on most 

of the area, but silty and clay sediments are also appear 

close to the rivers.  The area is influenced by continu-

ous groundwater table decrease compared to the 1970s 

due to climate change and anthropogenic activities (Ra-

konczai, 2011). The present groundwater level has high 

spatial variability: in the highly elevated areas it varies 

between 5-20 m (e.g. Illancs microregion in Bácska 

Plain Mesoregion), and towards the rivers it decreases. 

Close to the rivers the depth of groundwater table is 

around 1 m or less. Thus vegetation growth is highly 

dependent on precipitation, especially on elevated ar-

eas. These areas are the most exposed to water shortage 

in drought years, thus vegetation development is 

strongly influenced by the changes of the climate pa-

rameters. The annual mean temperature is around 11 °C 

and the annual amount of precipitation is between 500-

600 mm. In July the mean temperature is around 21 and 

23 °C, the precipitation in the summer half-year is at 

about 300 mm (OMSZ, 2014). The temperature shows 

 

Fig. 1 Location of the study area in the Carpathian Basin and the sampling sites 
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significant yearly variability, however, an increasing 

tendency of the temperature can be clearly detected. 

Since the 1990s, warm years occurred more frequently. 

In terms of the precipitation conditions of the area, de-

creasing tendency can observed, years drier than the 

average occur more frequently and the temporal distri-

bution of precipitation is less favorable. Therefore, 

drought years occurring increasingly frequently. 

The dominant land use type in the area is arable land 

based on Corine Land Cover 2006. The proportion of for-

ests is low and large part of them are planted with intro-

duced species (e.g. Robinia pseudoacacia, Pinus syl-

vestris and Pinus nigra).  

METHODS 

Scots pine (Pinus sylvestris) (abbr. pine), black locust 

(Robinia pseudoacacia) and white poplar (Populus alba) 

(abbr. poplar) planted forests were investigated to ana-

lyse the sensitivity and the exposure of forests to climate 

parameters. Altogether 10 pine and 10 poplar trees from 

two forests were sampled in the highest-elevated, blown 

sand covered areas in the Bácska Plain mesoregion (Il-

lancs microregion), further 5 pine and 9 black locust 

plantations were also investigated at lower elevation of 

the sand ridge (Danube-Tisza Plain mesoregion) on soils 

characterised by sand, silty sand and silt textures. During 

sampling tree height, tree health, foliage and trunk were 

considered. The age of trees varies between 23-47 years 

(Table 1). 

Table 1 Age of the investigated samples 

 

Age of trees  

(Illancs, 

Bácska Plain 

mesoregion) 

Nr of 

trees 

(pcs) 

Age of trees 

(Danube-Ti-

sza Plain 

mesoregion) 

Nr. of 

trees 

(pcs)  

pine 31-45 yrs 10 24-37 yrs 5 

black 

locust 
- - 23-47 yrs 9 

poplar 27-43 yrs 10 - - 
 

Samples were mostly collected by increment borers, 

though trunk slices were also studied, where investiga-

tions were carried out for 4 main directions. After sample 

preparation ring widths were measured using LINTAB 5 

Tree-ring measuring station and TSAP-Win software.  

Ring widths vary not only with the fluctuations of en-

vironmental conditions, but also with systematic changes in 

tree age. The standardization of ring-width measurements 

are necessary to remove the decrease in size associated with 

increasing age of a tree (Alestalo, 1971). Thus, ring-width 

indices were calculated by fitting a curve to each measured 

series and dividing each ring width by the corresponding 

value of the curve (Fritts, 1976) (Fig. 2 ).  

Detailed assessment was carried out at the highest 

elevated Illancs microregion. Here, ring-width indices 

were compared to climate parameters (annual precipita-

tion (Pa), precipitation of the vegetation period (Pv) and 

mean temperature in the vegetation period (Tv)) based on 

the neighboring meteorological stations (Szeged, Kiskun-

halas), furthermore to drought indices that combine basic 

meteorological parameters to describe the yearly exposure 

to water scarcity or surplus. In the assessment Pálfai 

Drought Index (PAI, Pálfai, 1990) and Forest Aridity In-

dex (FAI, Führer et al., 2011) were calculated (Eq.1-2). 

For the comparison of climatic indices and ring-width in-

dices correlation coefficients were calculated. The simi-

larity of ring-width and drought index pattern was also 

evaluated, based on the Gleichläufigkeit test method 

(Schweingruber, 1989), which analyse the agreement be-

tween the interval trends of two curves. The similarity was 

expressed in percentage.  

 

Fig. 2 Method of ring width index calculation 

Forest Aridity Index (Führer et al., 2011): 

FAI =
TVII−VIII

PV−VII+PVII−VIII
∗ 100                                        (Eq.1) 

where, T: monthly mean temperature, P: monthly pre-

cipitation sum 

Pálfai Drought Index (Pálfai, 1990): 

321 ***100*
)(

)(
kkk

mmP

Ct
PAI

VIIIX

VIIIIV



 
                                 (Eq.2) 

where, T: monthly mean temperature, P: monthly precip-

itation sum, k1: correction factor estimating heat waves, 

k2: correction factor estimating duration of dry spells, k3: 

correction factor estimating groundwater depth. 

Based on the calculated ring-with indices, ring-

width sensitivity was also assessed (Eq. 3-4) which 

showed the variability of ring-widths in the consecutive 

years reflecting changing environmental conditions. 

Ring width sensitivity was calculated following Fritts 

(1976): 

𝑆𝑖+1 =
(𝑥𝑖+1 − 𝑥𝑖) ∗ 2

(𝑥𝑖+1 + 𝑥𝑖)
                                                 (Eq. 3) 

where Si+1 is the sensitivity of the tree rings in i+1 year, 

xi is ring width  

Mean tree-ring sensitivity was defined as:  

𝑆 = ∑
𝑆𝑖

𝑛 − 1

𝑖=𝑛−1

𝑖=1

                                                            (Eq. 4) 

where n is the total number of tree-rings 
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According to Horváth et al. (2003), mean tree ring sen-

sitivity classes are the followings:  

S<0.2 low sensitivity 

0.2<S<0.3 medium sensitivity 

S>0.3high sensitivity 

At the study sites of Danube-Tisza Plain mesore-

gion tree-ring sensitivity was calculated, furthermore 

correlation coefficients of ring-width and PAI and FAI 

were calculated for spatial assessment.  

Based on the results, spatial assessment was carried 

out, where the correlation coefficients of PAI and FAI 

and the tree-ring sensitivity were analysed to reveal the 

effect of exposure to water scarcity (different water 

availability) on tree growth. 

RESULTS  

Assessment of tree samples in the highest elevated Illancs 

microregion 

Pine samples showed increasing variability in the past 

two decades compared to previous periods (Fig. 3a). 

The lowest ring-width indices were experienced in the 

most severe drought years (e.g. 1993, 2003) and the hu-

mid periods (e.g. the end of the 1990s) were indicated 

by the highest values. The period between the end of 

the 1970s and the early 1990s showed the lowest vari-

ability of ring-width indices.  

A strong similarity of the ring-width to aridity in-

dices could be identified. The percentage of the years, 

where the interval trends of two curves agree, varies 

between 64.3–85.3% and 60.0–85.3% in case of PAI 

and FAI respectively. The percentage values were 

somewhat higher in case of PAI compared to FAI at all 

pine samples.  

Poplar samples also showed increasing variability 

in the past two decades compared to the previous periods 

(Fig. 3b). The lowest and highest ring-width indices 

were experienced in the same periods as it was observed 

in case of pine trees. In this case the 1980-1990 decades 

had the lowest variability of ring-width indices.  

The similarity of the ring-width and the aridity in-

dices of poplar samples were similar to the pine, per-

centage values related to PAI and FAI were 61.0–

81.4% and 60.5–88.4%, respectively. However, in case 

of poplar trees the higher percentage values varied be-

tween PAI and FAI from sample to sample and FAI 

showed higher similarity in case of 7 samples.  

As a result of the correlation analysis, PAI and the 

FAI values indicated the highest correlations with the 

ring-width indices in the case of all samples (Fig. 4a). 

The correlation was significant at the 0.01 level and the 

0.05 level for 50-50% of the samples, respectively.  

The relationship of the ring-width indices with the 

precipitation (Pa and Pv) was lower compared to the 

aridity indices, and in case of a few samples the corre-

lation was not significant, however the correlation with 

the precipitation of the vegetation period (Pv) was 

somewhat higher. The lowest level of correlation could 

be identified in case of the mean temperature of the 

vegetation period (Tv) with the ring-width indices, and 

more than half of the samples showed no significant 

correlation with this factor.  

The relationship between the investigated variables 

was not so evident like it was in case of the pine trees, 

they showed a higher standard deviation. PAI was the 

investigated factor, where the most samples showed sig-

nificant relationship with the ring-width indices (Fig. 

4b). The relationship with the precipitation was higher 

compared to the temperature in this case as well. 

The calculated decadal mean tree-ring sensitivity 

of the pine samples indicated medium and high sensitiv-

ity of ring-widths for almost the whole period, except for 

some samples between 1970-1980 and 1980-1990 peri-

ods (Fig. 5). An increasing tendency in sensitivity values 

was identified towards the past two decades. 

 

Fig. 3 Mean, minimum and maximum values of the investigated ring-width indices and the similarity between the samples and the 

aridity indices of pine (a) and poplar samples (b) 
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Similarly to pine samples, the calculated decadal 

mean tree-ring sensitivity of poplar also indicated me-

dium and high sensitivity f ring-widths for almost the 

whole period (Fig. 5b). The increasing tendency of sen-

sitivity values was much more intensive compared to 

the pine samples and for the past decade, all samples 

were described by high sensitivity values. 

 Assessment of samples at Danube-Tisza Plain mesoregion 

On the lower lying areas ring-width indices show lower 

correlation with the PAI and the FAI values. Only 21 % 

of the samples (1 pine and 2 black locust samples) showed 

significance at 0.01 level and further 57 % at the 0.05 level 

with the PAI. The correlations with the FAI were similar 

to the PAI, except for a few samples. The correlation was 

significant at the 0.01 level and the 0.05 level for 64% of 

the samples. 

The similarity of the ring-width with the PAI var-

ies between 60.7%–77.1% for pine, similarly to the 

samples from the Illancs microregion. The variability 

of the similarity values were higher in case of the black 

locust samples (48.8%–82.6%). With the FAI the sim-

ilarity values were slightly lower (57.1%–75.0% for 

pine and 51.2–71.7% for black locust). In case of only 

a few samples (4 of the 14) similarity was higher with 

the FAI. 

A strong similarity of the ring-width with the arid-

ity indices was identified for black locust. The percent-

age of the years, where the interval trends of two curves 

agree, varied between 64.3–85.3% and 60.0–85.3% in 

case of PAI and FAI, respectively. The percentage val-

ues were somewhat higher in case of PAI compared to 

FAI at all samples.  

The decadal mean tree-ring sensitivity for samples 

of the other part of the study area was lower compared 

to the samples of Illancs microregion (Fig. 6). In case 

of pine mostly low or medium sensitivity was observed, 

only one sample showed high sensitivity. The tree ring 

sensitivity of the sampled pine trees not increased in 

the last decades as it was observed in the Illancs region.  

The samples also indicated low or medium tree 

ring sensitivity in case of black locust and few sample 

showed high sensitivity. The sensitivity changes of the 

 

Fig. 4 Correlation factor (R) between the ring-width index of the samples and the investigated variables in case of pine (a) and poplar 

samples (b); PAI: Pálfai Aridity Index, FAI: Forest Aridity Index, Pa: annual precipitation, Pv: precipitation of the vegetation period, Tv: 

mean temperature of the vegetation period. The black lines represent the significance levels (0.01 and 0.05) 

 

Fig. 5 Tree ring sensitivity (Illancs, Bácska Plain mesoregion) in case of pine (a) and poplar samples (b). The black lines represent the 

thresholds of low, medium and high sensitivity 

 

Fig. 6 Tree ring sensitivity (Danube-Tisza Plain mesoregion) in case of pine (a) and black locust samples (b). The black lines represent 

the thresholds of low, medium and high sensitivity 
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black locust trees showed higher variability, and most 

of the samples did not show increasing values, only in 

case of a few samples increasing sensitivity was ob-

served and the rate of increase was lower compared to 

the samples of Illancs microregion.  

Spatial assessment of ring-width and site conditions 

The effect of exposure to water scarcity (different wa-

ter availability) on tree growth was revealed by spatial 

assessment. The significance level of correlation be-

tween ring-width index and aridity indices, and the 

mean tree ring sensitivity were overlapped by the rela-

tive groundwater depth on Figure 7.  In case of pine 

samples the strength of the correlation increased with 

the decreasing groundwater depth in case of both PAI 

and FAI. Samples closer to the rivers, where ground-

water level situated closer to the surface, no significant 

relationship was identified. Similar spatial pattern was 

recognized in case of the black locust compared to pine 

samples. The poplar samples from the highest elevated 

Illancs microregion also confirmed the revealed spatial 

relationship between the tree growth and the exposure 

to water scarcity.  

The spatial pattern of mean tree-ring sensitivity 

values (calculated for the whole tree sample) indicate 

similar differences than the correlation pattern. High 

sensitivity was identified in case of the samples from 

the Illancs microregion and from areas of low ground-

water table. All the other samples belonged to the me-

dium and low categories of sensitivity.  

DISCUSSION AND CONCLUSIONS 

Ring width is influenced by several external factors that 

can be both permanent and variable in a few decades-long 

period. Soil conditions and relief are among the factors 

that do not significantly change, however, meteorological 

and hydrological factors can vary significantly. As it is 

well-known, severe drought years result in narrow ring 

widths, while humid years cause wide increment. The 

changes of the groundwater availability can also be a lim-

iting factor of tree growth. 

In the study area droughts and the deep groundwater 

table have both impact on tree growth. Tree responses to 

these changing conditions were reported earlier from this 

area: the decrease of green biomass and foliage in drought 

years were described by Kovács (2007) using remote 

sensing methods.  

The spectacular decrease of ring-width (in arid years 

even below 1 mm for both pine and poplar in the highest 

elevated Illancs microregion, where the most significant 

high groundwater table decrease was recorded since the 

1970s) corresponds to the drought years determined by 

the investigated aridity indices. Their yearly changes 

compared to the changes of the ring-width indices are also 

relatively high and varies between 60-88% in Illancs re-

gion. The other samples are characterized by the same or 

lower similarity when closing to the rivers or areas of 

more favourable water supply.  

The relationship between the climate parameters and 

the ring-widths varies spatially with the changing site con-

ditions (e.g. elevation, groundwater depth, soil). The high-

est level of correlation coefficients were experienced in 

the highest elevated Illancs microregion, while the lowest 

ones occurred on the relatively lower lying areas, espe-

cially near to the Tisza River, where ground-water supply 

ensures sufficient water for tree growth.  

The ring-width sensitivity assessments showed an 

increasing tendency of sensitivity when comparing the 

consecutive decades. Along with the increasing ex-

tremities and the lowering groundwater-table, the 

yearly variation of ring-with increases to the highest 

rate in Illancs microregion, while towards the rivers, 

the increasing tendency becomes moderate, and in cer-

tain cases even no trend can be observed. 

The investigated planted forests are in a landscape 

that is dominantly used by agriculture and which is ex-

posed to high water scarcity. The exposure to climatic 

forces will tend to continue (Bartholy et al., 2011; Blanka 

et al., 2013; Mezősi et al., 2014) that is why the more ex-

 

Fig. 7  Spatial distribution of correlations between pine (green), black locust (red) and poplar (orange) samples and aridity indices in 

the case of PAI (a) and FAI (b), and spatial distribution of mean ring width sensitivity (c) 
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act knowledge on impacts is highly important. The de-

tailed information on the observed changes can help ad-

aptation and mitigation measures to the potential impacts 

of climate change.  
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