Self-Heating Coal Waste Fire Monitoring and Related Environmental Problems Case Studies from Poland and Ukraine
Main Article Content
Abstract
The self-heating of coal waste dumps is considered as a serious environmental issue, wherever active or inactive coal mining has been present. This issue is introduced from two active coal mining regions from Poland (Upper Silesian Coal Basin) and Ukraine (Donetsk Coal Basin) based on mineralogy, organic petrography and geochemistry, and remote sensing techniques. Thermally affected coal wastes reveal changes recorded by organic and mineral matter. Irregular cracks and fissures appear within and at the edges of organic matter particles, which are oxidised, devolatilised and plasticised. Mineral phases underwent oxidation, dehydration, structure rebuilding and recrystallisation. Highest temperatures generated during the fire cause melting and paralava formation. During self-heating, some chalcophile elements like Hg (mostly present as HgS), Pb, Zn can be enriched and released, or different organic pollutants like phenols (originated from vitrinite particles), different PAHs with alkyl substitutes, chlorinated PAHs, or sulphur heterocycles are formed. The introduced remote sensing techniques helped to localise and monitor hot spots with different temperature ranges. Applying SWIR bands of Landsat hot spots from extremely burning dumps in Ukraine were successfully localised, however, only night-time scenes with SWIR can be used. The sun’s disturbing effects should be considered as an influential factor for both thermal imaging camera or satellite images. Thermal cameras can reveal the most detailed signs of low to high temperature anomalies with different cracks and line shapes.
Downloads
Article Details
x
References
Abramowicz, A., Chybiorz, R. 2019: Fire detection based on a series of thermal images and point measurements: the case study of coal-waste dumps. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1/W2, 9–12. DOI: 10.5194/isprs-archives-XLII-1-W2-9-201910.5194/isprs-archives-XLII-1-W2-9-2019
Abramowicz, A., Chybiorz, R. 2020. Identification of fire changes using thermal IR images: the case of coal-waste dumps. Proceedings of the 15th Quantitative InfraRed Thermography Conference. Porto, Portugal, 21-30 September 2020. DOI: 10.21611/qirt.2020.11410.21611/qirt.2020.114
Abramowicz, A., Rahmonov, O., Chybiorz, R. 2021a. Environmental management and landscape transformation on self-heating coal-waste dumps in the Upper Silesian Coal Basin. Land 10(1), 23. DOI: 10.3390/land1001002310.3390/land10010023
Abramowicz, A., Rahmonov, O., Chybiorz, R., Ciesielczuk, J. 2021b. Vegetation as an indicator of underground smoldering fire on coal-waste dumps. Fire Safety Journal 121, 103287. DOI: 10.1016/j.firesaf.2021.10328710.1016/j.firesaf.2021.103287
Abramowicz, A., Rahmonov, O., Fabiańska, M.J., Nádudvari, Á., Chybiorz, R., Michalak, M. 2021c. Changes in soil chemical composition caused by self-heating of coal-waste dump. Land Degradation and Development 32(15) 4340–4349. DOI: 10.1002/ldr.404010.1002/ldr.4040
Achten, C., Hofmann, T. 2009. Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Science of Total Environment 407, 2461–2473. DOI: 10.1016/j.scitotenv.2008.12.00810.1016/j.scitotenv.2008.12.008
Alpern, B., Lemos de Sousa, M.J., Pinheiro, H.J., Zhu, X. 1992. Optical Morphology of Hydrocarbons and Oil Progenitors in Sedimentary Rocks – Relations with Geochemical Parameters. Publicações do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências do Porto. pp. 61.
Bonneville, A., Kerr, Y.A. 1987. A thermal forerunner of the 28th March 1983 Mount Etna eruption from satellite thermal infrared data. Journal of Geodynamics 7, 1–31. DOI: 10.1016/0264-3707(87)90061-510.1016/0264-3707(87)90061-5
Bonneville, A., Vasseur, G., Kerr, Y. 1985. Satellite thermal infrared observations of Mount Etna after the 17th March 1981 eruption. Journal of Volcanology and Geothermal Research 36, 209–232. DOI: 10.1016/0377-0273(85)90074-510.1016/0377-0273(85)90074-5
Carras, J.N., Bainbridge, N.W., Saghafi, A., Szemes, F., Roberts, O.C., Haneman, D. 1994. The Self-heating of Spoil Piles from Open Cut Coal Mines, Vol. 1 Characterisation, Field Measurements and Modelling. NERRDC 1609 Final Report. Australian Coal Association, Brisbane, p. 128.
Carras, J.N., Bus, J., Roberts, O.C., Szemes, F. 1999. Monitoring of Temperature and Oxygen Profiles in Selfheating Spoil Piles. ACARP Project C6003 Final Report. Australian Coal Association, Brisbane, p. 19.
Carras, J.N., Day, S.J., Saghafi, A., Williams, D.J. 2009. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal Coal Geololgy 78(2), 161–168. DOI: 10.1016/j.coal.2008.12.00110.1016/j.coal.2008.12.001
Chatterjee, R.S. 2006. Coal fire mapping from satellite thermal IR data—A case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing 60(2), 113–128. DOI: 10.1016/j.isprsjprs.2005.12.00210.1016/j.isprsjprs.2005.12.002
Ciesielczuk, J., Misz-Kennan, M., Hower, J.C., Fabiańska, M.J. 2014. Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland). International Journal Coal Geololgy 127, 42–55. DOI: 10.1016/j.coal.2014.02.00710.1016/j.coal.2014.02.007
Ciesielczuk J., Kruszewski Ł., Majka J. 2015. Comparative mineralogical study of thermally-altered coal-dump waste, natural rocks and the products of laboratory heating experiments. International Journal of Coal Geology 139, 114–141. DOI: 10.1016/J.COAL.2014.08.01310.1016/j.coal.2014.08.013
Clayton, G.D., Clayton, F.E. 1994. Patty’s Industrial Hygiene and Toxicology (4th ed.). John Wiley & Sons Inc. New York, Vol. 2A, 132 p.
Dz. U. pos. 1395 (Journal of Laws) 2016. Regulation of the Minister of Environment of September 1, 2016 on the method of assessing the pollution of the earth’s surface.
EPA, 2000 - United States Environmental Protection Agency Phenol, Online available at: https://www.epa.gov/sites/default/files/2016-09/documents/phenol.pdf
Fabiańska, M., Ciesielczuk, J., Nádudvari, Á., Misz-Kennan, M., Kowalski, A., Kruszewski, Ł. 2019. Environmental influence of gaseous emissions from self-heating coal waste dumps in Silesia, Poland. Environmental Geochemistry and Health 41(2), 575–601. DOI: 10.1007/s10653-018-0153-510.1007/s10653-018-0153-5
Fabiańska, M.J., Ciesielczuk, J., Misz-Kennan, M., Kruszewski, Ł., Nádudvari, Á. 2014. Organic compounds in water collected in burning coal-mining waste dumps in Lower Silesia, Poland. Mineralogia - Special Papers 42, 50–51.
Finkelman, R.B. 1995. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Swaine, D.J., Goodarzi, F. (eds.) Environmental Aspects of Trace Elements in Coal. Springer, Dordrecht, 27–50.
Finkelman, R.B. 2004. Potential health impacts of burning coal beds and waste banks. International Journal Coal Geololgy 59, 19–24. DOI: 10.1016/J.COAL.2003.11.00210.1016/j.coal.2003.11.002
Gangopadhyay, P.K., Malthuis, B., van Dink, P. 2005. ASTER derived emissivity and coal-fire related surface temperature anomaly a case study in Wuda, North China. International Journal of Remote Sensing 26(24), 5555–5571. DOI: 10.1080/0143116050029195910.1080/01431160500291959
Gao, G., Wang, L., Li, Z., Xie, Y., He, Q., Wang, Y. 2019. Adsorptive removal of pyridine in simulation wastewater using coke powder. Processes 7(7), 459–478. DOI: 10.3390/pr707045910.3390/pr7070459
Gentzis, T., Goodarzi, F. 1989. Organic petrology of a self-burning coal wastepile from Coleman, Alberta, Canada. International Journal Coal Geololgy 11(3-4), 257–271. DOI: 10.1016/0166-5162(89)90118-310.1016/0166-5162(89)90118-3
Głodek, A., Pacyna, J.M. 2009. Mercury emission from coal-fired power plants in Poland. Atmospheric Environment 43(35), 5668–5673. DOI: 10.1016/j.atmosenv.2009.07.04110.1016/j.atmosenv.2009.07.041
Grimmer, G., Brune, H., Deutsch-Wenzel, R., Naujack, K.-W., Misfeld, J., Timm, J. 1983. On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application onto mouse skin. Cancer Letters 21(1), 105–113. DOI: 10.1016/0304-3835(83)90089-710.1016/0304-3835(83)90089-7
Guha, A., Kumar, K.V. 2012. Structural controls on coal fire distributions - remote sensing based investigation in the Raniganj Coalfield, West Bengal. Journal of the Geological Society of India 79(5), 467–475. DOI: 10.1007/s12594-012-0071-610.1007/s12594-012-0071-6
Heffern, E.L., Coates, D.A. 2004. Geology of natural coal bed fires, Powder River Basin, USA. International Journal Coal Geololgy 59(1-2), 25–47. DOI: 10.1016/j.coal.2003.07.00210.1016/j.coal.2003.07.002
Hlawiczka, S., Kubica, K., Zielonka, U. 2003. Partitioning factor of mercury during coal combustion in low capacity domestic heating units. Science of Total Environment 312 (1-3), 261–265. DOI: 10.1016/S0048-9697(03)00252-310.1016/S0048-9697(03)00252-3
Homoki, E., Juhász, Cs., Baros, Z., Sütő, L. 2000. Antropogenic geomorphological research on waste heaps in the East-Borsod coal basin (NE Hungary). Z Badań nad wpływen antropopresji na środowisko. Sosnowiec, Studenckie Koło Naukowe Geografów Uniwersytetu Śląskiego, 24-31.
Hower, J.C., Campbell, J.L., Teesdale, W.J., Nejedly, Z., Robertson, J.D. 2008. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sufides from a Kentucky coal. International Journal Coal Geololgy 75, 88–92. DOI: 10.1016/j.coal.2008.03.00110.1016/j.coal.2008.03.001
Huang, W. 2004. Study on spontaneous combustion mechanism and prevention technology of coal gangue (Doctoral thesis). Chongqing University, Chongqing, p. 2004.
Huo, H., Jiang, X., Song, X., Li, Z.L., Ni, Z., Gao, C. 2014. Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou Coalfield, Northwest (NW) China. Remote Sensing 6(2), 1234–1259. DOI: 10.3390/rs602123410.3390/rs6021234
International Committee for Coal and Organic Petrology, (ICCP). 1998. New vitrinite classification (ICCP system 1994). Fuel 77(5), 349–358. DOI: 10.1016/S0016-2361(98)80024-010.1016/S0016-2361(98)80024-0
International Committee for Coal and Organic Petrology, (ICCP) 2001. The new inertinite classification (ICCP System 1994). Fuel 80(4), 459–471. DOI: 10.1016/S0016-2361(00)00102-210.1016/S0016-2361(00)00102-2
ISO 7404-3 2009. Methods for the petrographic analysis of coals—part 3: method of determining maceral group composition. International Organization for Standardization, Geneva, Switzerland (4 p.).
ISO 7404-5 2009. Methods for the petrographic analysis of coals—part 5: method of determining microscopically the reflectance of vitrinite. International Organization for Standardization, Geneva, Switzerland (11 p).
Jacob, H. 1993. Nomenclature, classification, characterization and genezis of natural solid bitumen (migrabitumen). In: Parnel, J., Kucha, H., Landais, P. (eds.) Bitumens in Ore Deposits. Special Publication of No.9 the Society for Geology Applied to Mineral Geology. Springer – Verlag, Berlin, Heidelberg, pp. 11–27.
Jendruś, R. 2016. Chemical and physical aspects of fires on coal waste dumps. Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach 8, 131–149
Kang, Y., Liu, G., Chou, C.L., Wong, M., Zheng, L., Ding, R. 2011. Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects. Science of Total Environment 412–413, 1–13. DOI: 10.1016/j.scitotenv.2011.10.02610.1016/j.scitotenv.2011.10.026
Kędzior, S. 2019. Distribution of methane contents and coal rank in the profiles of deep boreholes in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 202, 190-208. DOI: 10.1016/j.coal.2018.12.01010.1016/j.coal.2018.12.010
Kolker, A., Senior, C.L., Quick, J.C. 2006. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Applied Geochemistry 21(11), 1821–1836. DOI: 10.1016/j.apgeochem.2006.08.00110.1016/j.apgeochem.2006.08.001
Kruszewski, Ł, Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, C., Deput, E. 2020. Carbon nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) – a re-investigation by means of in situ FTIR external database approach. Science of Total Environment 698, 134274. DOI: 10.1016/j.scitotenv.2019.13427410.1016/j.scitotenv.2019.134274
Kruszewski, Ł., Fabiańska, M., Ciesielczuk, J., Segit, T., Orłowski, R., Motyliński, R., Kusy, D., Moszumańska, I. 2018. First multi-tool exploration of a gas-condensate-pyrolysate system from the environment of burning coal mine heaps: an in situ FTIR and laboratory GC and PXRD study based on Upper Silesian materials. Science of Total Environment 640–641, 1044–1071. DOI: 10.1016/j.scitotenv.2018.05.31910.1016/j.scitotenv.2018.05.319
Kus, J., Misz-Kennan, M., ICCP 2017. Coal weathering and laboratory (artificial) coal oxidation. International Journal of Coal Geology 171, 12–36. DOI: 10.1016/j.coal.2016.11.01610.1016/j.coal.2016.11.016
Kwiecińska, B., Pusz, S. 2016. Pyrolytic carbon – definition, classification and occurrence. International Journal of Coal Geology 163, 1–7. DOI: 10.1016/j.coal.2016.06.01410.1016/j.coal.2016.06.014
Kwiecińska, B., Petersen, H.I. 2004. Graphite, semi-graphite, natural coke, and natural char classification-ICCP system. International Journal of Coal Geology 57(2), 99–116. DOI: 10.1016/j.coal.2003.09.00310.1016/j.coal.2003.09.003
Langner, P., Mikutta, C., Suess, E., Marcus, M.A., Kretzschmar, R. 2013. Spatial distribution and speciation of arsenic in peat studied with microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy. Environmental Science and Technology 47(17), 9706–9714. DOI: 10.1021/es401315e10.1021/es401315e
Lester, E., Alvarez, D., Borrego, A.G., Valentim, B., Flores, D., Clift, D.A., Rosenberg, P., Kwiecińska, B., Barranco, R., Petersen, H.I., Mastalerz, M., Milenkova, K.S., Panaitescu, C., Marques, M.M., Thompson, A., Watts, D., Hanson, S., Predeanu, G., Misz, M., Wu, T. 2010. The procedure used to develop a coal char classificationCommission III Combustion Working Group of the International Committee for Coal and Organic Petrology. International Journal of Coal Geology 81(4), 333–342. DOI: 10.1016/j.coal.2009.10.01510.1016/j.coal.2009.10.015
Lewińska-Preis, L., Szram, E., Fabiańska, M.J., Nádudvari, Á., Misz-Kennan, M., Abramowicz, A., Kruszewski, Ł., Kita, A. 2021. Selected ions and major and trace elements as contaminants in coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland). International Journal of Coal Science and Technology. DOI: 0.1007/s40789-021-00421-910.21203/rs.3.rs-35061/v1
Li, H.J. 2010. Comprehensive Utilization of Coal Gangue. Chemical Industry Press, Beijing.
Li, W., Chen, L., Zhou, T., Tang, Q., Zhang, T. 2011. Impact of coal gangue on the level of main trace elements in the shallow groundwater of a mine reclamation area. Mining Science and Technology 21(5), 715–719. DOI: 10.1016/j.mstc.2011.03.00410.1016/j.mstc.2011.03.004
Liu, G., Yang, P., Zhang, W., Wang, G., Feng, Q. 2000. Research on separation of minor elements from coal during combustion. Journal of China University of Mining and Technology 10, 62–65.
Liu, H.B., Liu, Z.L. 2010. Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling. 54(12), 1331–1340. DOI: 10.1016/j.resconrec.2010.05.00510.1016/j.resconrec.2010.05.005
Lohrer, C., Schmidt, M., Krause, U. 2005. A study on the influence of liquid water and water vapour on the self-ignition of lignite coal-experiments and numerical simulations. Journal of Loss Prevention in the Process Industries 18(3), 167–177. DOI: 10.1016/j.jlp.2005.03.00610.1016/j.jlp.2005.03.006
Luo, K., Xu, L., Li, R., Xiang, L. 2002. Fluorine emission from combustion of steam coal of north China plate and northwest China. Chinese Science Bulletin 47, 1346–1350. DOI: 10.1360/02tb929810.1360/02tb9298
Misz, M., Fabiańska, M., Ćmiel, S. 2007. Organic components in thermally altered coal waste: preliminary petrographic and geochemical investigations. International Journal of Coal Geology 71(4), 405–424. DOI: 10.1016/j.coal.2006.08.00910.1016/j.coal.2006.08.009
Misz-Kennan, M. 2010. Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland. Mineralogia 41(3-4), 105–237. DOI: 10.2478/v10002-010-0001-410.2478/v10002-010-0001-4
Misz-Kennan, M., Fabiańska, M. 2010. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology 81(4), 343–358. DOI: 10.1016/j.coal.2009.08.00910.1016/j.coal.2009.08.009
Misz-Kennan, M., Fabiańska, M.J. 2011. Application of organic petrology and geochemistry to coal waste studies. International Journal of Coal Geology 88(1), 1–23. DOI: 10.1016/j.coal.2011.07.00110.1016/j.coal.2011.07.001
Misz-Kennan, M., Kus, J., Flores, D., Avila, C., Büçkün, Z., Choudhury, N., Christanis, K., Joubert, J,P., Kalaitzidis, S., Karayigit, A.I., Malecha, M., Marques, M., Martizzi, P., O’Keefe, J.M.K., Pickel, W., Predeanu, G., Pusz, S., Ribeiro, J., Rodrigues, S., Singh, A.K., Suárez-Ruiz, I., Sýkorová, I., Wagner, N.J., Životić, D., ICCP 2020. Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group – Commission III). International Journal of Coal Geology 220, 103411 DOI: 10.1016/j.coal.2020.10341110.1016/j.coal.2020.103411
Masalehdani, N.N., Mees, F., Dubois, M., Coquinot, Y., Jean-Luc, Potdevin, Fialin, M., Blanc-Valleron, Marie-Madelein E. 2009. Condensate minerals from a burning coal-waste heap in Avion, Northern France. The Canadian Mineralogist 47 (3), 573–591. DOI: 10.3749/canmin.47.3.57310.3749/canmin.47.3.573
McLafferty, F.W., Stauffer, D.B. (eds.) 1989. The Wiley/NBS Registry of Mass Spectral Data, 7 Volume Set. John Wiley and Sons, New York. ISBN: 978-0-471-62886-6.
Monterroso, C., Macias, F. 1998. Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): composition and mineral stability. Science of Total Environment 216(1-2), 121–132.
Nádudvari, Á., Fabiańska, M.J., Misz-Kennan, M. 2015. Distribution of phenols related to self-heating and water washing on coal-waste dumps and in coaly material from the Bierawka river (Poland). Mineralogia 46(1-2), 29–40. DOI: 10.1515/mipo-2016-000510.1515/mipo-2016-0005
Nádudvari, Á, Fabiańska, M.J., Marynowski, L., Kozielska, B., Konieczyński, J., Smołka Danielowska, D., Ćmiel, S. 2018a. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. Science of Total Environment 628–629, 1462–1488. DOI: 10.1016/j.scitotenv.2018.02.09210.1016/j.scitotenv.2018.02.092
Nádudvari, Á., Abramowicz, A., Fabiańska, M., Misz-Kennan, M., Ciesielczuk, J. 2021a. Classification of fires in coal waste dumps based on Landsat, Aster thermal bands and thermal camera in Polish and Ukrainian mining regions. International Journal of Coal Science and Technology 8, 441–456. DOI: 10.1007/s40789-020-00375-410.1007/s40789-020-00375-4
Nádudvari, Á., Kozielska, B., Abramowicz, A., Fabiańska, M., Ciesielczuk, J., Cabała, J., Krzykawski, T. 2021b. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). Journal of Hazardous Materials 412, 125244. DOI: 10.1016/j.jhazmat.2021.12524410.1016/j.jhazmat.2021.125244
Nádudvari, Á., Abramowicz, A., Maniscalco, R., Viccaro, M. 2020b. The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland). Remote Sensing 12(16), 2537. DOI: 10.3390/rs1216253710.3390/rs12162537
Nádudvari, Á., Ciesielczuk J. 2018. Remote sensing techniques for detecting self-heated hot spots on coal waste dumps in Upper Silesia, Poland, chapter 18. In: Stracher G.B. (ed.) Coal and peat fires: a global perspective: vol 5: case studies—advances in field and laboratory research, 1st edn. Elsevier, Amsterdam, pp 387–406.
Nádudvari, Á., Fabiańska, M.J. 2016. Use of geochemical analysis and vitrinite reflectance to assess different self-heating processes in coal-waste dumps (Upper Silesia, Poland). Fuel 181, 102–119. DOI: 10.1016/j.fuel.2016.04.12910.1016/j.fuel.2016.04.129
Nádudvari, Á., Fabiańska, M.J., Misz-Kennan, M., Ciesielczuk, J., Kowalski, A. 2020a. Investigation of organic material self-heating in oxygen-depleted condition within a coal-waste dump in Upper Silesia Coal Basin, Poland. Environmental Science and Pollution Research 27(8), 8285–8307. DOI: 10.1007/s11356-019-07336-810.1007/s11356-019-07336-8
Oppenheimer, C. 1991. Lava Flow Cooling Estimated from Landsat Thematic Mapper Infrared Data: The Lonquimay Eruption (Chile, 1989). Journal of Geophysical Research 96(B13), 21865–21878. DOI: 10.1029/91JB0190210.1029/91JB01902
Panov, B.S., Dudik, A.M., Shevchenko, O.A, Matlak, A.S. 1999. On pollution of the biosphere in industrial areas: the example of the Donets coal Basin. International Journal of Coal Geology 40(2-3), 199-210. DOI: 10.1016/S0166-5162(98)00069-X10.1016/S0166-5162(98)00069-X
Philp, R.P. 1985. Fossil Fuel Biomarkers: Application and Spectra. Elsevier, Amsterdam. ISBN-10: 0444424717.
Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., ICCP 2017. Classification of liptinite – ICCP System 1994. International Journal of Coal Geology 169, 40–61. DOI: 10.1016/j.coal.2016.11.004.10.1016/j.coal.2016.11.004
Pieri, D.C., Glaze, L.S., Abrams, M.J. 1990. Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology 18(10), 1018–1022. DOI: 10.1130/0091-7613(1990)018<1018:TROOAA>2.3.CO;210.1130/0091-7613(1990)018<1018:TROOAA>2.3.CO;2
Pierwoła, J., Ciesielczuk, J., Misz-Kennan, M., Fabiańska, M.J., Bielińska, A., Kruszewski, Ł. 2018. Structure and thermal history of the Wełnowiec dump, Poland: A municipal dump rehabilitated with coal waste. International Journal Coal Geololgy 197, 1–19. DOI: 10.1016/j.coal.2018.08.00110.1016/j.coal.2018.08.001
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics 10(13), 5951–5964. DOI: 10.5194/acp-10-5951-201010.5194/acp-10-5951-2010
Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkleman, R.B., Blake, D.R., McCormack, J.K., Schroeder, P. 2007. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal Coal Geololgy 72(2), 124–140. DOI: 10.1016/J.COAL.2007.01.00110.1016/j.coal.2007.01.001
Prakash, A., Schaefer, K., Witte, W.K., Collins, K., Gens, R., Goyette, M.P. 2011. A remote sensing and GIS based investigation of a boreal forest coal fire. International Journal Coal Geololgy 86(1), 79–86. DOI: 10.1016/j.coal.2010.12.00110.1016/j.coal.2010.12.001
Prus, W., Fabiańska, M.J., Łabno, R. 2015. Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). Science of Total Environment 518–519, 266–279. DOI: 10.1016/j.scitotenv.2015.02.09610.1016/j.scitotenv.2015.02.096
Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., Alastuey, A., Zhuang, X., Lu, W., Wang, Y. 2008. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal Coal Geololgy 75(2), 93–104. DOI: 10.1016/j.coal.2008.04.00310.1016/j.coal.2008.04.003
Querol, X., Fernandez-Turiel, J.L., Lopez-Soler, A. 1995. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74(3), 331–343. DOI: 10.1016/0016-2361(95)93464-O10.1016/0016-2361(95)93464-O
Raask, E. 1985. The mode of occurrence and concentration of trace elements in coal. Progress in Energy and Combustion Science 11(2), 97–118. DOI: 10.1016/0360-1285(85)90001-210.1016/0360-1285(85)90001-2
Radke, M., Willsch, H. 1993. Generation of alkylbenzenes and benzo[b]thiophenes by artificial thermal maturation of sulfur-rich coal. Fuel 72(8), 1103–1108. DOI: 10.1016/0016-2361(93)90316-t10.1016/0016-2361(93)90316-T
Ribeiro, J., da Silva E.F., Flores, D. 2010. Burning of coal waste piles from Douro Coalfield (Portugal): petrological, geochemical and mineralogical characterization. International Journal Coal Geololgy 81(4), 359–372. DOI: 10.1016/j.coal.2009.10.00510.1016/j.coal.2009.10.005
Ribeiro, J., Suárez-Ruiz, I., Ward, C., Flores, D. 2016. Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain). Journal Coal Geololgy 154–155, 92–106. DOI: 10.1016/j.coal.2015.12.01110.1016/j.coal.2015.12.011
Rothery, D.A., Francis, P.W., Wood, C.A. 1988. Volcano monitoring using short wavelength infrared data from satellites. Journal of Geophysical Research: Solid Earth 93(B7), 7993–8008. DOI: 10.1029/JB093iB07p0799310.1029/JB093iB07p07993
Skarżyńska, K.M. 1995. Reuse of coal mining wastes in civil engineering – Part 1: properties of minestone. Waste Management 13(1), 3–42. DOI: 10.1016/0956-053X(95)00004-J10.1016/0956-053X(95)00004-J
Skręt, U., Fabiańska, M.J., Misz-Kennan, M. 2010. Simulated water-washing of organic compounds from selfheated coal wastes of the Rymer Cones Dump (Upper Silesia Coal Region, Poland). Organic Geochemistry 41(9), 1009-1012. DOI: 10.1016/j.orggeochem.2010.04.01010.1016/j.orggeochem.2010.04.010
Suárez-Ruiz, I., Crelling, J. (eds.) 2008. Applied Coal Petrology. The Role of Petrology in Coal Utilization. Elsevier, Amsterdam. 388 pp.
Sun, X., Xu, H., Wang, J., Ning, N., Huang, G., Yu, Y., Ma, L. 2018. Kinetic research of quinoline, pyridine and phenol adsorption on modified coking coal. Physicochemical Problems of Mineral Processing 54(3), 965–974. DOI: 10.5277/ppmp1898
Sütő, L., Kozák, M., McIntosh, R.W., Püspöki, Z., Beszeda, I. 2007. Secondary mineralisation processes in coal pit heaps and its impact on the environment in NE Hungary. Acta Ggm Debrecina 2, 41–45.
Sýkorová, I., Pickel, W., Christianis, K., Wolf, M., Taylor, T.G., Flores, D. 2005. Classification of huminite - ICCP System 1994. International Journal Coal Geololgy 62(1-2), 85–106. DOI: 10.1016/j.coal.2004.06.00610.1016/j.coal.2004.06.006
Sýkorová, I., Kříbek, B., Havelcová, M., Machovič, V., Laufek, F., Veselovský, F., Špaldoňová, A., Lapčák, L., Knésl, I., Matysová, P., Majer, V. 2018. Hydrocarbon condensates and argillites in the Eliška Mine burnt coal waste heap of the Žacléř coal district (Czech Republic): products of high- and low-temperature stage of self-ignition. International Journal Coal Geololgy 190, 146–165. DOI: 10.1016/j.coal.2017.11.00310.1016/j.coal.2017.11.003
Swaine, D.J. 1994. Trace-elements in coal and their dispersal during combustion. Fuel Processing Technology 39(1-3), 121–137. DOI: 10.1016/0378-3820(94)90176-710.1016/0378-3820(94)90176-7
Taylor, L.T., Hausler, D.W., Squires, A.M. 1981. Organically bound metals in a solvent refined coal: metallograms for a Wyoming subbituminous coal. Science 7(4508), 644–646. DOI: 10.1126/science.213.4508.64410.1126/science.213.4508.644
Vassilev, S.V., Eskenazy, G.M., Vassileva, C.G. 2001. Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology 72(2), 103–129. DOI:10.1016/S0378-3820(01)00186-210.1016/S0378-3820(01)00186-2
Voigt, S., Tetzlaff, A., Zhang, J., Künzer, C., Zhukov, B., Strunz, G., Oertel, D., Roth, A., van Dijk, P., Mehl, H. 2004. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China. International Journal Coal Geololgy 59(1-2), 121–136. DOI: 10.1016/j.coal.2003.12.01310.1016/j.coal.2003.12.013
Wagner, N.J., Hlatshwayo, B. 2005. The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa. International Journal Coal Geololgy 63(3-4), 228–246. DOI: 10.1016/j.coal.2005.02.01410.1016/j.coal.2005.02.014
Wagoner, D. 1976. Compilation of Ambient Trace Substances. Draft of Report Prepared by Research Triangle Institute under Contract No. 68-02-1325. US Environmental Protection Agency (EPA),
Xiao, J., Li, F., Zhong, Q., Bao, H., Wang, B., Huang, J., Zhang, Y. 2015. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC. Hydrometallurgy 155, 118–124. DOI: 10.1016/j.hydromet.2015.04.01810.1016/j.hydromet.2015.04.018
Zhang, C.S. 2008. New Approaches in Gangue Resource Comprehensive Utilization. Chemical Industry Press, Beijing, p. 2008.
Zhang, J., Kuenzer, C. 2007. Thermal surface characteristics of coal fires 1: results of in-situ measurements. Journal of Applied Geophysics 63, 117–134. DOI: 10.1016/j.jappgeo.2007.08.00210.1016/j.jappgeo.2007.08.002
Zhao, Y., Zhang, J.Y., Huang, W.C., Li, Y., Song, D.Y., Zhao, F.H., Zheng, C. 2008a. Arsenic emission during combustion of high-arsenic coals from Southwestern Guizhou. China. Energy Conversion and Management 49(4), 615–624. DOI: 10.1016/j.enconman.2007.07.04410.1016/j.enconman.2007.07.044
Zhao, Y., Zhang, J., Chou, C.-L., Li, Y., Wang, Z., Ge, Y., Zheng, C. 2008b. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal Coal Geololgy 73(1), 52–62. DOI: 10.1016/j.coal.2007.07.00710.1016/j.coal.2007.07.007
Zhou, C., Liu, G., Wu, D., Fang, T., Wang, R., Fan, X. 2014. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China. Chemosphere 95, 193–199. DOI: 10.1016/j.chemosphere.2013.08.06510.1016/j.chemosphere.2013.08.065
Zhou, Y., Ren, Y. 1992. Distribution of arsenic in coals of Yunnan province, China, and its controlling factors. International Journal Coal Geololgy 20(1-2), 85–98. DOI: 10.1016/0166-5162(92)90005-H10.1016/0166-5162(92)90005-H