Temporal Relationship of Increased Palaeodischarges and Late Glacial Deglaciation Phases on the Catchment of River Maros/Mureş, Central Europe

Main Article Content

Tamás Bartyik
György Sipos
Dávid Filyó
Tímea Kiss
Petru Urdea
Fabian Timofte

Abstract

River Maros/Mureş has one of the largest alluvial fans in the Carpathian Basin. On the surface of the fan several very wide, braided channels can be identified, resembling increased discharges during the Late Glacial. In our study we investigated the activity period of the largest channel of them, formed under a bankfull discharge three times higher than present day values. Previous investigations dated the formation of the palaeochannel to the very end of the Pleistocene by dating a point bar series upstream of the selected site. Our aim was to obtain further data on the activity period of the channel and to investigate temporal relationships between maximum palaeodischarges, deglaciation phases on the upland catchment and climatic amelioration during the Late Pleistocene.


The age of sediment samples was determined by optically stimulated luminescence (OSL). The investigation of the luminescence properties of the quartz extracts also enabled the assessment of sediment delivery dynamics in comparison to other palaeochannels on the alluvial fan.


OSL age results suggest that the activity of the channel is roughly coincident with, but slightly older than the previously determined ages, meaning that the main channel forming period started at 13.50±0.94 ka and must have ended by 8.64±0.82 ka. This period cannot directly be related to the major phases of glacier retreat on the upland catchments, and in terms of other high discharge channels only the activity of one overlaps with a major deglaciation phase at ~17-18 ka. Based on these, high palaeodischarges can be rather related to increased Late Glacial runoff, resulted by increasing precipitation and scarce vegetation cover on the catchment. Meanwhile, the quartz luminescence sensitivity of the investigated channel refers to fast sediment delivery from upland subcatchments. Therefore, the retreat of glaciers could affect alluvial processes on the lowland by increasing sediment availability, which contributed to the development of large braided palaeochannels.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bartyik, Tamás, György Sipos, Dávid Filyó, Tímea Kiss, Petru Urdea, and Fabian Timofte. 2021. “Temporal Relationship of Increased Palaeodischarges and Late Glacial Deglaciation Phases on the Catchment of River Maros/Mureş, Central Europe”. Journal of Environmental Geography 14 (3-4):39-46. https://doi.org/10.2478/jengeo-2021-0010.
Section
Articles

Funding data

References

Antoniazza, G., Lane, S.N. 2021. Sediment yield over glacial cycles: A conceptual model. Progress in Physical Geography: Earth and Environment (OnlineFirst), 1–24. DOI: 10.1177/030913332199729210.1177/0309133321997292

Arnold, L.J., Bailey, R.M., Tucker G.E. 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2, 162–167. DOI: 10.1016/j.quageo.2006.05.00310.1016/j.quageo.2006.05.003

Bartyik, T., Floca, C., Pál-Molnár, E., Urdea P., Hamed, E.D., Sipos, Gy. 2021a. The potential use of OSL properties of quartz in investigating fluvial processes on the catchment of river Mures, Romania. Journal of Environmental Geography 14(1-2), 58–67. DOI: 10.2478/jengeo-2021-000610.2478/jengeo-2021-0006

Bartyik, T., Magyar, G., Filyó, D., Tóth, O., Blanka-Végi, V., Kiss, T., Marković, S., Persoiu, I., Gavrilov, M., Mezősi, G., Sipos, G. 2021b. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quaternary Geochronology 64, 101166. DOI: 10.1016/j.quageo.2021.10116610.1016/j.quageo.2021.101166

Fiala, K., Sipos, Gy., Kiss, T., Lázár, M. 2007. Morfológiai változások és a vízvezető képesség a Tisza és Maros makói szelvényében a 2000. évi árvíz kapcsán (Morphological changes and water conductivity in the Makó section of the Tisza and Maros rivers in relation to the 2000 flood). Hidrológiai Közlöny 87(5), 37–45. (in Hungarian)

Fitzsimmons, E. 2011. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 38(3), 199–208. DOI: 10.2478/s13386-011-0030-910.2478/s13386-011-0030-9

Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part 1, experimental design and statistical models. Archaeometry 41, 339–364. DOI: 10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.x

Gábris, Gy. 1995. A folyóvízi felszínalakítás módosulásai a hazai későglaciális-holocén őskörnyezet változásainak tükrében (River activity as a function of changing palaeoenvironmental conditions during the Late Glacial-Holocene, Hungary). Földrajzi Közlemények 119, 3–10. (in Hungarian)

Gábris, Gy., Nádor, A. 2007. Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews 26, 2758–2782. DOI: 10.1016/j.quascirev.2007.06.03010.1016/j.quascirev.2007.06.030

Gábris, Gy. 2013. A folyóvízi teraszok hazai kutatásának rövid áttekintése – A teraszok kialakulásának és korbeosztásának új magyarázata (A brief review of domestic research on river terraces - A new explanation of terrace formation and age distribution). Földrajzi Közlemények 137(3), 240–247. (in Hungarian)

Gray, H.J., Jain, M., Sawakuchi, A.O., Mahan, S.A., Tucker, G.E. 2019. Luminescence as a sediment tracer and provenance tool. Reviews of Geophysics 57(3), 987–1017. DOI: 10.1029/2019RG00064610.1029/2019RG000646

Katona, O., Sipos, Gy., Onaca, A., Ardelean, F. 2012. Reconstruction of palaeo-hydrology and fluvial architerture at the Orosháza palaeochannel of River Maros, Hungary. Journal of Environmental Geography 5(1-2), 29–38.

Kiss, T., Sümeghy, B., Hernesz, P., Sipos, Gy., Mezősi, G. 2013. Az Alsó-Tisza menti ártér és a Maros hordalékkúp későpleisztocén és holocén fejlődéstörténete (The Late Pleistocene and Holocene evolution of the Lower Tisza floodplain and the Maros alluvial fan). Földrajzi Közlemények 137, 269–277. (in Hungarian)

Kiss, T., Sümeghy, B., Sipos, Gy. 2014. Late Quaternary paleo-drainage reconstruction of the Maros River Alluvial Fan. Geomorphology 204, 49–60. DOI: 10.1016/j.geomorph.2013.07.02810.1016/j.geomorph.2013.07.028

Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., Sipos, Gy. 2015. The evolution of the Great Hungarian Plain fluvial system - Fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International 388, 142–155. DOI: 10.1016/j.quaint.2014.05.05010.1016/j.quaint.2014.05.050

Lisiecki, E.L., Raymo, E.M. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1), PA1003, 1–17. DOI: 10.1594/PANGAEA.704257

Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., Zöller, L. 2002. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20(2), 53–61.

Mezősi, G. 2011. Magyarország természetföldrajza (Physical Geography of Hungary). Akadémiai Kiadó, Budapest. 49–65. (in Hungarian)

Murray, A.S., Wintle, A.G. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37(4), 377–381. DOI: 10.1016/S1350-4487(03)00053-210.1016/S1350-4487(03)00053-2

Nian, X., Zhang, W., Qiu, F., Qin, J., Wang, Z., Sun, Q., Chen, J., Chen, Z., Liu, N. 2019. Luminescence characteristics of quartz from Holocene delta deposits of the Yangtze River and their provenance implications. Quaternary Geochronology 49, 131–137. DOI: 10.1016/j.quageo.2018.04.01010.1016/j.quageo.2018.04.010

Pietsch, T.J., Olley, J.M., Nanson, G.C. 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3(4), 365–376. DOI: 10.1016/j.quageo.2007.12.00510.1016/j.quageo.2007.12.005

Prescott, J.R., Hutton, J.T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term variations. Radiation Measurements 23, 497–500. DOI: 10.1016/1350-4487(94)90086-810.1016/1350-4487(94)90086-8

Preusser, F., Ramseyer, K., Sclücheter, C. 2006. Characterisation of low OSL intensity quartz from New Zealand Alps. Radiation Measurements 41, 871–877. DOI: 10.1016/j.radmeas.2006.04.01910.1016/j.radmeas.2006.04.019

Rasmussen, S.O., Bigler, M., Blockley, S.P.E., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W.Z., Lowe, J.J., Pedro, J., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson, A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., Winstrup, M. 2014. A stratigraphic framework for naming and robust correlation of abrupt climatic changes during the last glacial period based on three synchronized Greenland ice core records. Quaternary Science Review 106, 14–28. DOI: 10.1016/j.quascirev.2014.09.00710.1016/j.quascirev.2014.09.007

Rittenour, T.M. 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archeological research. Boreas 37(4), 613–635. DOI: 10.1111/j.1502-3885.2008.00056.x10.1111/j.1502-3885.2008.00056.x

Ruszkiczay-Rüdiger, Zs., Kern, Z., Urdea, P., Braucher, R., Madarász, B., Schimmelpfennig, I., ASTER TEAM 2016. Revised deglaciation history of the Pietrele-Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quaternary International 415, 216–229. DOI: 10.1016/j.quaint.2015.10.08510.1016/j.quaint.2015.10.085

Ruszkiczay-Rüdiger, Zs., Madarász, B., Kern, Z., Urdea, P., Braucher, R., ASTER TEAM 2017. Late Pleistocene deglaciation and paleo-environment in the Retezat Mountains, Southern Carpathians, in: Geophysical Research Abstracts 18, EGU2017-2755.

Ruszkiczay-Rüdiger, Zs., Kern, Z., Urdea, P., Madarász, B., Braucher, R., ASTER TEAM 2021. Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Souther Carpathians, Romania). Geomorphology 384, 107719, 1–19. DOI: 10.1016/j.geomorph.2021.10771910.1016/j.geomorph.2021.107719

Sawakuchi, A.O., Blair, M.W., DeWitt, R., Faleiros, F.M., Hyppolito, T.N., Guedes, C.C.F. 2011. Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments. Quaternary Geochronology 6, 261–272. DOI: 10.1016/j.quageo.2010.11.00210.1016/j.quageo.2010.11.002

Sawakuchi, A.O., Jain, M., Mineli, T.D., Nogueira, L., Bertassoli Jr., D.J., Häggi, C., Sawakuchi, H.O., Pupi, F.N., Grohmann, C.H., Chiessi, C.M., Zabel, M., Mulitza, S., Mazoca, C.E.M., Cunha, D.F. 2018. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth and Planet Science Letters 492, 152–162. DOI: 10.1016/j.epsl.2018.04.00610.1016/j.epsl.2018.04.006

Sipos, Gy. (ed.) 2012. Past, Present and Future of the Maros/Mureş River. University of Szeged. p. 212.

Sipos, Gy., Kiss, T., Tóth, O. 2016. Constraining the age of floodplain levels along the lower section of river Tisza. Hungary. Journal of Environmental Geography 9(1-2), 39–44. DOI: 10.1515/jengeo-2016-000610.1515/jengeo-2016-0006

Starkel, L. 2002. Younger Dryas-Preboreal transition documented in the fluvial environment of Polis rivers. Global and Planetary Change 35, 157–167. DOI: 10.1016/S0921-8181(02)00133-910.1016/S0921-8181(02)00133-9

Starkel, L., Gębica, P., Superson, J. 2007. Last Glacial–Interglacial cycle in the evolution of river valleys in southern and central Poland. Quaternary Science Reviews 26, 2924–2936. DOI: 10.1016/j.quascirev.2006.01.03810.1016/j.quascirev.2006.01.038

Sümeghy, B., Kiss, T., Sipos, Gy., Tóth, O. 2013. A Maros hordalékkúp felszíni képződményeinek geomorfológiája és kora (Geomorphology and age of the surface formations of the Maros alluvial fan). Földtani Közlöny 143/3, 265–278. (in Hungarian)

Sümeghy, B. 2014. A Maros hordalékkúp fejlődéstörténeti rekonstrukciója (Historical reconstruction of the evolution of the Maros alluvial fan). PhD dissertation, Szegedi Tudományegyetem. (in Hungarian)

Urdea, P. 2004. The Pleistocene glaciation of the Romanian Carpathians, in: Quaternary Glaciations – Extend chronology, Ehlers, J., Gibbard, P.L. (eds.), 2004 Elsevier B.V. 301–307.

Vandenberghe, J. 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: a refinement of theory. Geomorphology 98, 275–284. DOI: 10.1016/j.geomorph.2006.12.03010.1016/j.geomorph.2006.12.030

Wintle, A.G., Murray, A.S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369–391. DOI: 10.1016/j.radmeas.2005.11.00110.1016/j.radmeas.2005.11.001