Applying Automatic Mapping Processing By GMT to Bathymetric and Geophysical Data Cascadia Subduction Zone, Pacific Ocean
Main Article Content
Abstract
The Cascadia Trench is stretching along the convergent plate boundaries of Pacific Plate, North America Plate and Juan De Fuca Plate. It is an important geomorphological structural feature in the north-east Pacific Ocean. The aim of the paper is to analyse the geomorphology of the Cascadia Trench west of Vancouver Island (Canada and USA) using the GMT cartographic scripting toolset. The unique geomorphological feature of the Cascadia Trench is that the thick sediment layer completely obscures the subduction zone and abyssal hills. This results in the asymmetric profile in the cross-section of the trench. Bathymetric data were extracted from the GEBCO 2019 dataset (15 arc-second grid), sediment thickness by the GlobSed dataset. Due to the dominance of high sedimentary rate and complexity of the tectonic processes and geologic settings, Cascadia Trench develops very specific asymmetric geomorphic shape comparing to the typical V-form. The results of the geomorphic modelling show that eastern side of the trench has a gentle curvature (slope: 35.12°), partially stepped, due to the tectonic movements and faults. The opposite, oceanward side is almost completely leveled. The trench is narrow with maximal depth at the selected segment -3489 m and for the whole dataset -6201 m. The most repetitive depth is in a range -2500 to -2400 m (267 samples) and -2500 to -2600 m (261 samples). The bottom is mostly flat due to the high sedimentation rates indicating the accumulative leveling processes. Marine free-air gravity anomalies along the Cascadia Subduction Zone are characterized by weakly positive values (20 mGal) increasing rapidly in the zone of the continental slope (>200 mGal), which is associated with a decrease in thickness of the Earth’s crust.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
References
Agostinetti, N.P, Miller, M.S. 2014. The fate of the downgoing oceanic plate: Insight from the Northern Cascadia subduction zone. Earth and Planetary Science Letters 408 (15), 237–251. DOI: 10.1016/j.epsl.2014.10.016
Amante, C., Eakins, B.W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, 19. DOI: 10.7289/V5C8276M
Atwater, B.F., Carson, B., Griggs, G.B., Johnson, H.P., Salmi, M.S. 2014. Rethinking turbidite paleoseismology along the Cascadia subduction zone. Geology 42, 827–830. DOI: 10.1130/G35902.1
Bohrmann G., Greinert J., Suess E., Torres, M. 1998. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26(7), 647–650. DOI: 10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2
Bodine, J.H., Watts, A.B. 1979. On lithospheric flexure seaward of the Bonin and Mariana trenches. Earth and Planetary Science Letters 43, 132–148. DOI:10.1016/0012-821X(79)90162-6.
Bodmer, M., Toomey, D.R., Roering, J.J., Karlstrom, L. 2020. Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc. Earth and Planetary Science Letters 531(1) 115965. DOI: 10.1016/j.epsl.2019.115965
Carpentier, M., Weisa, D., Chauvel, C. 2014. Fractionation of Sr and Hf isotopes by mineral sorting in Cascadia Basin terrigenous sediments. Chemical Geology 382(29), 67-82. DOI: 10.1016/j.chemgeo.2014.05.028
Colombo, O.L. 1984. The Global Mapping of Gravity with Two Satellites. Nederlands Geodetic Commission, 7(3). Publications on Geodesy, New Series.
Coppola, L., Gustafsson, Ö., Andersson, P., Eglinton, T.I., Uchida, M., Dickens, A.F. 2007. The importance of ultrafine particles as a control on the distribution of organic carbon in Washington Margin and Cascadia Basin sediments. Chemical Geology 243(1–2), 142–156. DOI: 10.1016/j.chemgeo.2007.05.020
Davis, E.E., Heesemann, M., Lambert, A. He, J. 2017. Seafloor tilt induced by ocean tidal loading inferred from broadband seismometer data from the Cascadia subduction zone and Juan de Fuca Ridge. Earth and Planetary Science Letters 463(1), 243–252. DOI: 10.1016/j.epsl.2017.01.042
Davis, E.E., Hyndman, R.D. 1989. Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geological Society of America Bulletin 101, 1465–1480. DOI: 10.1130/0016-7606(1989)101<1465:aardos>2.3.co;2
Ekström G., Nettles M., Dziewonski A.M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. DOI: 10.1016/j.pepi.2012.04.002
Evans, R.L., Wannamaker, P.E., McGary, R.S., Elsenbeck, J. 2014. Electrical structure of the central Cascadia subduction zone: The EMSLAB Lincoln Line revisited. Earth and Planetary Science Letters 402(15), 265–274. DOI: 10.1016/j.epsl.2013.04.021
Flueh, E.R., Fisher, M.A., Bialas, J., Childs, J.R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D.W., ten Brink, U.S., Trehu, A.M., Vidal, N. 1998. New seismic images of the Cascadia subduction zone from cruise SO108-ORWELL. Tectonophysics 293, 69–84. DOI: 10.1016/S0040-1951(98)00091-2
Gainanov, A.G. 1980. Gravimetric studies of the Earth’s crust of the oceans. Moscow, MSU Press, 240 p.
Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C. 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
GEBCO Compilation Group 2020. The GEBCO_2020 Grid. DOI: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9
Geersen, J., Voelker, D., Behrmann, J.H. 2018. Oceanic Trenches. In: Micallef, A., Krastel, S., Savini, A. (eds.) Submarine Geomorphology. Springer International Publishing AG, 409–425. DOI: 10.1007/978-3-319-57852-1
Greene, H.G., Barrie, J.V., Todd, B.J. 2018. The Skipjack Island fault zone: An active transcurrent structure within the upper plate of the Cascadia subduction complex. Sedimentary Geology 378(15), 61–79. DOI: 10.1016/j.sedgeo.2018.05.005.
Guzzetti, F., Cardinali, M., Reichenbach, P. 1996. The influence of structural setting and lithology on landslide type and pattern. Environmental and Engineering Geosciences 2(4), 531–555. DOI: 10.2113/gseegeosci.ii.4.531
Hofmann-Wellenhof, B., Lichtenegger, H. Collins, H.J. 1993. Global Positioning System. New York: Springer-Verlag Wien.
Hutchinson, I., Clague, J. 2017. Were they all giants? Perspectives on late Holocene plate-boundary earthquakes at the northern end of the Cascadia subduction zone. Quaternary Science Reviews, 169(1) 29–49. DOI: 10.1016/j.quascirev.2017.05.015
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5(1), 28–42. DOI: 10.2478/s13533-012-0120-0
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90. DOI: 10.6084/m9.figshare.7434200
Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P. 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (ed). Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI. DOI: 10.13140/RG.2.2.11468.87687
Lemenkova, P. 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente. 158 p. DOI: 10.31237/osf.io/p4h9v
Lemenkova, P., Promper, C., Glade, T. 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (eds.) Protecting Society through Improved Understanding. 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285. DOI: 10.13140/RG.2.2.10077.05600
Lemenkova, P. 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42. DOI: 10.31223/osf.io/437uw
Lemenkova, P. 2019a. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22. DOI: 10.2478/rgg-2019-0008
Lemenkova, P. 2019b. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14(2), 39–48. DOI: 10.21163/GT_2019.142.04
Lemenkova, P. 2019c. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51(4), 181–194. DOI: 10.2478/pcr-2019-0015
Lemenkova, P. 2019d. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45(2), 57–84. DOI: 10.3846/gac.2019.3785
Lemenkova, P. 2019e. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22. DOI: 10.35180/gse-2019-0020
Lemenkova, P. 2020a. GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences 5(1), 1–17. DOI: 10.28978/nesciences.691708
Lemenkova, P. 2020b. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74(97), 1, 19–39. DOI: 10.6084/m9.figshare.12249773
Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H., Olson T.R. 1998. NASA/TP-1998-206861: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA.
Li, D., McGuire, J.J., Liu, Y., Hardebeck, J.L. 2018. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths. Earth and Planetary Science Letters 485(1), 55–64. DOI: 10.1016/j.epsl.2018.01.002.
Long, M.D. 2016, The Cascadia Paradox: Mantle flow and slab fragmentation in the Cascadia subduction system. Journal of Geodynamics 102, 151–170. DOI: 10.1016/j.jog.2016.09.006
Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406, DOI: 10.1029/2011JB008916.
Penserini, B.D., Roering, J.J., Streig. A. 2017. A morphologic proxy for debris flow erosion with application to the earthquake deformation cycle, Cascadia Subduction Zone, USA. Geomorphology 282, 150–161. DOI: 10.1016/j.geomorph.2017.01.018
Perkins, J.P., Roering, J.J., Burns, W.J., Struble, W., Black, B.A., Schmidt, K.M., Duvall, A., Calhoun, N. 2018. Hunting for landslides from Cascadia’s great earthquakes, Eos, 99, 1–9. DOI: 10.1029/2018EO103689.
Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. DOI: 10.1126/science.1258213
Schenke, H.W., Lemenkova, P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21. DOI: 10.6084/m9.figshare.7435538
Simms, A.R., DeWitt, R., Zurbuchen, J., Vaughan, P. 2017. Coastal erosion and recovery from a Cascadia subduction zone earthquake and tsunami. Marine Geology 392(1), 30–40. DOI: 10.1016/j.margeo.2017.08.009
Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R. 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20(4), 1756–1772. DOI: 10.1029/2018GC008115
Suetova, I.A., Ushakova, L.A., Lemenkova, P. 2005a. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142. DOI: 10.6084/m9.figshare.7435535
Suetova, I.A., Ushakova, L.A., Lemenkova, P. 2005b. Geoecological Mapping of the Barents Sea Using GIS. In: International Cartographic Conference. DOI: 10.6084/m9.figshare.7435529
Wessel, P., Smith, W.H.F. 1991. Free software helps map and display data. Eos Transactions AGU 72 (41), 441. DOI: 10.1029/90EO00319
Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F. 2013. Generic mapping tools: Improved version released. Eos Transactions AGU 94(45), 409–410. DOI: 10.1002/2013EO450001