The Advantages of Using Sequential Stochastic Simulations when Mapping Small-Scale Heterogeneities of the Groundwater Level
Main Article Content
Abstract
In the environmental risk assessment of oil fields, a detailed knowledge of the heterogeneity of groundwater surfaces is absolutely indispensable. Based on theoretical considerations, in order to analyse small-scale heterogeneities, we decided that the Sequential Gaussian Simulation (SGS) approach seemed to be the most appropriate one. This method gives preference to the reproduction of small-scale heterogeneities at the expense of local accuracy. To test whether this kind of heterogeneity of the groundwater level corresponds to sedimentological variability, a point bar of the River Tisza (South-Hungary) was chosen. In variograms, the longest range was derived from the large-scale sedimentological heterogeneity of the point-bar, the medium range was in accordance with the radius of the meander and its direction coincided with the depositional strike of the meander, while the shortest range corresponded to the lateral heterogeneity of the deposits where the ground water level was measured. The similarities and differences of the realizations of SGS express the uncertainty of the map representation of the ground water surface. The E-type estimates of 100 equiprobable realizations resulted in a very detailed surface. The hydraulic gradient map obtained from the E-type estimates can provide us with a better understanding of the local flow characteristics.
Downloads
Article Details
x
References
Balderacchi, M. ,Benoit, P., Cambier, P Ekloc O. M., Garginid, A., Gemitzi, A., Gurelf, M., Kløve, B, Nakich, Z., Predaai E., Ruzicic S., Wachniewj, P., Trevisana M. (2013). Groundwater. Pollution and Quality Monitoring Approaches at the European Level. Critical Reviews inEnvironmental Science and Technology 43, 323-408.
Brooker, P. 1979. Kriging. Engineering and Mining Journal 1980 9, 148-153.
Brunner, D.S.Endres, A.L.Sudicky, E.A. 2001. Detailed ground-penetrating radar survey of a point-bar, Whiteman’s Creek, Ontario for use in a new fully integrated 3D surface/ subsurface flow model. - Geological Society of America Annual Meeting, November 5-8, 2001. Boston, Massachusetts.
Carr, J.R Myers, D.E., 1985. COSIM: A Fortran IV program for Conditional Simulations.-Computer and Geosciences v.11, 675-705.10.1016/0098-3004(85)90012-3
N. Cressie 1991. Statistics for Spatial Data. John Wiley & Sons, Inc. New York, 892p.
Deutsch C.V. 2002. Geostatistical Reservoir Modelling, Oxford University Press.
Deutsch, C.V., Journel, A. 1998. GSLIB. Geostatistical Software Library and User’s Guide. - Oxford University Press, New York, 369p.
Geiger, J. Komlósi, J. 1996. Szedimentológiai geomatematikai 3-D modellező rendszer törmelékes CH-tárolókban (Sedimentological, geomatematical 3D modelling system in turbiditic CH reservoirs) Kőolaj és Földgáz 2, 53-81.
Journel, A. 1987. Geostatistics for the environmental sciences. - EPA Project no. Cr 811893. Technical report. U.S. EPA, EMS Lab., Las Vegas, NV
Journel, A, 1993. Modelling uncertainty: Some conceptual thoughts. In: Dimitrakopoulos, R.(ed): Geostatistics for the Next Century, Kluwer, Dordrecht, 30-43.10.1007/978-94-011-0824-9_5
Miall, A.D. 1996. The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. - Springer Verlag, New York, 582 p.
Mucsi, L. 2001. Characterisation of oil-industrial contamination using aerial and thermal images - EARSeL Symposium, Drezda. In: Buchroithner (ed:) A Decade of Trans- European Remote Sensing Cooperation, Balkema, Rotterdam, 373-377.
Mucsi, L., Kiss, R., Szatmári, J., Bódis, K., Kántor, Z., Dabis, G., Dzsupin, M. 2004. Felszín alatti vezetékek környezetszennyező hatásainak felmérése távérzékeléses technológiával (Invesgtigation of possible environmental pollution of subsurface pipelines using remote sensing technologies). Geodézia és Kartográfia 56 ( 4) 3-8.
Pryor, W.A. 1987. Permeability, porosity patterns and variations in some Holocene sand bodies. In: Beaumont, E.A., Foster, N.H. (ed) Reservoirs II. Sandstones. AAPGD Treatise of Petroleum Geology Reprint Series. No.4, 127-154.
Theodossiou, N. 1999. Evaluation of the distribution of hydraulic head in an aquifer using the Kriging method. - Scientific Journal of Hellenic Hydrotechnical Association. Hydrotechnika 9, 3-14.
Theodossiou, N., Latinopoulos, P. 2006. Evaluation and optimization of groundwater observation network using the Kriging methodology. Environmental Modelling & Software 21, 991-1000.
Vanloocke, R., De Borger, R., Voets J. P. . Verstraete W 2010. Soil and groundwater contamination by oil spills; problems and remedies International Journal of Environmental Studies 8 (1-4), 99-111.10.1080/00207237508709721
Webster, R., Oliver, M. A. (2001): Geostatistics for Environmental Scientists, John Wiley & Sons.