Changes in Floodplain Vegetation Density and the Impact of Invasive Amorpha fruticosa on Flood Conveyance

Main Article Content

Judit Nagy
Tímea Kiss
István Fehérváry
Csaba Vaszkó

Abstract

Flood conveyance of floodplains is significantly influenced by the riparian vegetation cover, since vegetation affects flow velocity, therefore has a considerable impact on flood height and rate and pattern of sedimentation. However, climate change promotes the spread of invasive species, and their rapid growth results in dense vegetation stands, thus they have a significant impact on floodwater hydraulics. The aims of the present study are (1) to analyse the long-term changes in land-use and vegetation density on the Lower Tisza River, (2) to evaluate the role of the invasive Amorpha fruticosa in increasing vegetation density, and (3) to model the effect of dense floodplain vegetation on flood level and flood conveyance. Long-term (1784-2017) changes of land-use suggest that in natural conditions the study area was occupied by wetlands (92%), thus water covered the area for almost the whole year. In the 19th century, after levee constructions the wetlands were replaced by meadows and pastures (94%), then by the end of the 20th century planted and riparian forests replaced these land-covers. As a result, the mean roughness (0.14) of the floodplain has increased threefold until the early 21st century. Today forests are invaded by Amorpha fruticosa, which increases the vegetation density by 3% in riparian forests, by 23% in forest plantations, and by up to 100% in abandoned pastures and a rable lands. According to the results of HEC-RAS (Hydrologic Engineering Center’s River Analysis System) and CES (Conveyance Estimation System) models, if floodplain vegetation was managed and Amorpha fruticosa was cleared from the floodplain, peak flood level would decrease by 15 cm. Due to dense vegetation, the flood conveyance decreased by 4-6%, and the presence of Amorpha fruticosa reduced the flood flow velocities by 0.014-0.016 m/s. Accordingly, clearance of the floodplain from Amorpha fruticosa would have positive effects on flood protection, since peak flood stages would decrease and flood waves would shorten.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nagy, Judit, Tímea Kiss, István Fehérváry, and Csaba Vaszkó. 2018. “Changes in Floodplain Vegetation Density and the Impact of Invasive Amorpha Fruticosa on Flood Conveyance”. Journal of Environmental Geography 11 (3-4):3-12. https://doi.org/10.2478/jengeo-2018-0008.
Section
Articles

References

Acrement, G.J., Schneider, V.R. 1989. Roughness coefficients for densely vegetated flood plains. U. S. Geological Survey, Water-Resources Investigations Report 83–4247. DOI: 10.3133/wri83424710.3133/wri834247

Antonarakis, A.S., Richards, K.S., Brasington, J., Muller, E. 2010. Determining leaf area index and leafy tree roughness using terrestrial laser scanning. Water Resources Research 46, W06510 DOI: 10.1029/2009wr00831810.1029/2009wr008318

Barnes, H. H. 1967. Roughness characteristics of natural channels. USGS Water Supply Paper 1849, 213 p. DOI: 10.3133/wsp184910.3133/wsp1849

Burkham, D.E. 1976. Hydraulic effects of changes in bottom-land vegetation on three major floods, Gila River in south-eastern Arizona. Geological Survey Professional Paper, 655-J, 17 p. DOI: 10.3133/pp655j10.3133/pp655j

Catford, J.A., Jansson, R. 2014. Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Pythologist 204(1), 19–36. DOI: 10.1111/nph.1295110.1111/nph.12951

Chow, V.T. 1959. Open channel hydraulics, McGraw-Hill, New York, United States. 364 p.

Coon, W.F. 1998. Estimation of roughness coefficients for natural stream channels with vegetated banks. United States Geological Survey, Water-Supply Paper 2441. DOI: 10.3133/wsp244110.3133/wsp2441

Delai, F., Kiss, T., Nagy, J. 2018. Field-based estimates of floodplain roughness along the Tisza River (Hungary): The role of invasive Amorpha fruticosa. Applied Geography 90, 96–105. DOI: 10.1016/j.apgeog.2017.11.00610.1016/j.apgeog.2017.11.006

Devi, T.B., Kumar, B. 2016. Flow characteristics in an alluvial channnel covered partially with submerged vegetation. Ecological Engineering 94, 478–492. DOI: 10.1016/j.ecoleng.2016.06.01810.1016/j.ecoleng.2016.06.018

Didham, R.K., Tylianakis, J.M., Hutchison, M.A., Ewers, R.M., Gemmell, N.J. 2005. Are invasive species the drivers of ecological change? Trends in Ecology & Evolution, 20(9), 470–474. DOI: 10.1016/j.tree.2005.07.00610.1016/j.tree.2005.07.006

Dumitraşcu, M., Grigorescu, I., Kucsicsa, G., Dragota, C., Năstase, M. 2014. Non-native and native invasive terrestrial plant species in Comana Natural Park. Case-studies: Amorpha fruticosa and Crataegus monogyna. Romanian Journal of Geography 55, 81–89

Freeman G.E., Rahmeyer W.H., Copeland R.R. 2000. Determination of resistance due to shrubs and woody vegetation. Technical Report, ERDC/CHL TR-00-25, US Army Engineer Research and Development Center, Vicksburg, MS. DOI: 10.21236/ada383997

Gábris, Gy., Timár, G., Somhegyi, A., Nagy, I. 2004. Árvízi tározás vagy árvízi gazdálkodás a Tisza mentén. (Flood storage of flood management on the Tisza River) II. Magyar Földrajzi Konferencia (CD kiadvány), 1–18.

Galema, A. 2009. Evaluation of vegetation resistance descriptors for floodplain management. Mater Thesis, University of Twente, Hollandia. 114 p.

Garssen, A.G., Baattrup-Pedersen, A., Voesenek, L.A.C.J., Verhoeven, J.T.A., Soons, M.B. 2015. Riparian plant community responses to increased flooding: a meta-analysis. Global Change Biology 21, 2881–2890. DOI: 10.1111/gcb.1292110.1111/gcb.12921

Järvelä, J. 2004. Determination of flow resistance caused by non-submerged woody vegetation. Intl. J. River Basin Management 2 (1), 61–70. DOI: 10.1080/15715124.2004.963522210.1080/15715124.2004.9635222

Kiss, T. 2014. Fluviális folyamatok antropogén hatásra megváltozó dinamikája: egyensúly és érzékenység vizsgálata folyóvízi környezetben. (Changing dynamics of fluvial processes due to anthropogenic effects: assessment of equilibrium and sensitivity in fluvial environment) Academic doctoral thesis, Szeged, 164 p.

Lászlóffy, W. 1982. A Tisza. Vízi munkálatok és vízgazdálkodás a Tisza vízrendszerében (Tisza. Engineering works and water management in the Tisza river system). Akadémiai Kiadó, Budapest, 610 p.

Mihály, B., Botta-Dukát, Z. 2004. Özönnövények I. (Invasive species I.), Természet BÚVÁR Alapítvány Kiadó, Budapest, 366 p.

Oroszi, V., Kiss, T. 2006. Területhasználat-változás a Maros egy hullámtéri öblözetében a XIX. századtól napjainkig (Land use change on a floodplain section of the Maros River since the 19th century). Tájökológiai Lapok 4(2), 309–316.

Osterkamp, W.R., Hupp, C.R. 2010. Fluvial processes and vegetation – Glimpses of the past, the present, and perhaps the future. Geo-morphology 116, 274–285. DOI: 10.1016/j.geomorph.2009.11.01810.1016/j.geomorph.2009.11.018

Planty-Tabacchi, A.M., Tabacchi, E., Naimann, R.J., Deferrari, C., Decamps, H. 1996. Invasibility of species-rich communities in riparian zones. Conservation Biology 10(2), 598–607. DOI: 10.1046/j.1523-1739.1996.10020598.x10.1046/j.1523-1739.1996.10020598.x

Pyšek, P., Prach, K. 1993. Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. Journal of Biogeography 20, 413–420. DOI: 10.2307/284558910.2307/2845589

Pyšek, P., Prach, K. 1994. How important are rivers for supporting plant invasion? Ecology and Management of Invasive Riverside Plants 19, 19–26.

Rakonczai, J., Kozák, P. 2009. Az Alsó-Tisza-vidék és a Tisza (The Lower-Tisza region and the Tisza). Földrajzi Közlemények 133(4), 385–395.

Rátky, I., Rátky, É. 2009. Lehetőségek a Tisza vízszállító-képességének javítására (Improvement possibilities of the water carrying capacity of the Tisza River). Hidrológiai Közlöny 89(1), 35–44.

Ree, W.O., Crow, F. 1977. Friction factors for vegetated waterways of small slope. Technical Report Publication S-151, US Department of Agriculture, Agricultural Research Service.

Samuels, P.G., Bramley, M.E., Evans, E.P. 2002. A new conveyance estimation system Proceedings 37th Defra Flood & Coastal Management Conference, University of Keele.

Sándor, A., Kiss, T. 2008. A területhasználat változás hatása az üledék-felhalmozódásra, közép-tiszai vizsgálatok alapján (The effect of land use change on sediment deposition, case study at Middle-Tisza). IV. Magyar Földrajzi Konferencia (CD kiadvány), 1–6.

Sándor, A., Kiss, T. 2007. A 2006. tavaszi árvíz okozta feltöltődés mértéke és az azt befolyásoló tényezők vizsgálata a Közép-Tiszán, Szolnoknál (Assessment of deposition rate of spring flood and its affecting factors on the Middle-Tisza, Szolnok). Hidrológiai Közlöny 87(4), 19–24.

Schnitzler, A., Hale, B. W., Alsum, E. M. 2007. Examining native and exotic species diversity in European riparian forests. Biological Conservation 138, 146–156. DOI: 10.1016/j.biocon.2007.04.01010.1016/j.biocon.2007.04.010

Simonkai, L. 1893. Aradmegye és Arad város növényvilága (Vegetation of Arad county and Arad city). In: Jancsó, B. (ed.) Aradvármegye és Arad szabad királyi város monographiája I., Arad, 426 p.

Szigetvári, Cs., Tóth, T. 2012. Cserjés gyalogakác (Amorpha shrubs). In: Csiszár, Á. (ed.) Inváziós növényfajok Magyarországon, Nyugat-magyarországi Egyetem Kiadó, 121–126.

Takuya, U., Keiichi, K., Kohji, M. 2014. Experimental and numerical study on hydrodynamics of riparian vegetation. Journal of Hydrodynamics 26(5), 796–806. DOI: 10.1016/s1001-6058(14)60088-310.1016/s1001-6058(14)60088-3

Vargas-Luna, A., Crosato, A., Uijttewaal, W.S.J. 2015. Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surf. Process. Landforms 40, 157–176. DOI: 10.1002/esp.363310.1002/esp.3633

Wang, C., Zheng, S., Wang, P., Hou, J. 2015. Interactions between vegetation, water flow and sediment transport: A review. Journal of Hydrodynamics 27(1), 24–37. DOI: 10.1016/s1001-6058(15)60453-x10.1016/s1001-6058(15)60453-x

Warmink, J.J. 2007. Vegetation Density Measurements using Parallel Photography and Terrestrial Laser Scanning. Master thesis, Utrecht University, Utrecht, The Netherlands, 83 p.