Modeling the Impacts of Climate Change on Phytogeographical Units A Case Study of the Moesz Line

Main Article Content

Ákos Bede-Fazekas

Abstract

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate dataset, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bede-Fazekas, Ákos. 2013. “Modeling the Impacts of Climate Change on Phytogeographical Units: A Case Study of the Moesz Line”. Journal of Environmental Geography 6 (1-2):21-27. https://doi.org/10.2478/v10326-012-0003-3.
Section
Articles

Funding data

References

Arundel, S.T. 2005. Using spatial models to establish climatic limiters of plant species’ distributions. Ecological Modelling 182 (2), 159-181.

Bartholy, J., Pongrácz, R. 2008. Regionális éghajlatváltozás elemzése a Kárpát-medence térségére (Analysis of regional climate change in the region of the Carpathian Basin). In: Harnos, Zs., Csete, L. Klímaváltozás: környezet - kockázat - társadalom. Szaktudás Kiadó Ház, Budapest (in Hungarian)

Bartholy, J., Pongrácz, R., Gelybó, Gy. 2007. A 21. század végén várható éghajlatváltozás Magyarországon (The predicted climate change in the end of 21st century in Hungary). Földrajzi Értesítő 56 (3-4), 147-168. (in Hungarian) Bede-Fazekas, Á. 2011. Impression of the global climate change on the ornamental plant usage in Hungary. ActaUniversitatis Sapientiae, Agriculture and Environment 3 (1), 211-220.

Bede-Fazekas, Á. 2012a. Melegigényes díszfák telepíthetőségi területének előrejelzése a 21. századra (Prediction of the area of introduction of ornamental trees for the 21st century). Thesis. Corvinus University of Budapest, Budapest (in Hungarian)

Bede-Fazekas, Á. 2012b. Methods of modeling the future shift of the so called Moesz-line. Applied Ecology andEnvironmental Research 10 (2), 141-156.

Berry, P.M., Dawson, T.P., Harrison, P.A., Pearson, R.G. 2002. Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology and Biogeography 11 (6), 453-462.

Carpenter, G.A., Gopal, S., Macomber, S., Martens, S., Woodcock, C.E., Franklin, J. 1999. A Neural Network Method for Efficient Vegetation Mapping. RemoteSensing of Environment 70 (3), 326-338.

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 (1), 37-46.

Czinkóczky, A., Bede-Fazekas, Á. 2012. Visualization of the climate change with the shift of the so called Moesz-line. In: Buhmann, E., Ervin, S., Pietsch, M. Peer Reviewed Proceedings of Digital Landscape Architecture 2012 at Anhalt University of Applied Sciences. Herbert Wichmann Verlag, Berlin

Czúcz, B. 2010. Az éghajlatváltozás hazai természetközeli élőhelyekre gyakorolt hatásainak modellezése (Modelling the impact of climate change on natural habitats in Hungary). Dissertation, Corvinus University of Budapest, Budapest (in Hungarian)

Czúcz, B., Gálhidy, L., Mátyás, Cs. 2011. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68 (1), 99-108.

Führer, E. 2008. Erdőgazdaság (Forestry). In: Harnos, Zs., Gaál, M., Hufnagel, L. Klímaváltozásról mindenkinek. Budapesti Corvinus Egyetem, Kertészettudományi Kar, Matematikai és Informatikai Tanszék, Budapest (in Hungarian)

Führer, E., Rasztovits, E., Csóka, Gy., Lakatos, F., Bordács, S., Nagy, L., Mátyás, Cs. 2010. Current status of European beech (Fagus sylvatica L.) genetic resources in Hungary. Communicationes Instituti Forestalis Bohemicae 25 (1), 152-163.

Guisan, A., Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135 (2-3), 147-186.

Hanley, J.A., McNeil, B.J. 1982. The meaning and use of area under a receiver operating characteristics (ROC) curve. Radiology 143 (1), 29-36.

Harrison, S., Damschen, E.I., Grace, J.B. 2010. Ecological contingency in the effects of climatic warming on forest herb communities. Proc Natl Acad Sci USA 107 (45), 19362-19367.

Hijmans, R.J., Graham, C.H. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12, 2272-2281.

Hilbert, D.W., Ostendorf, B. 2001. The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecological Modelling 146 (1-3), 311-327.

Hilbert, D.W., Van Den Muyzenberg, J. 1999. Using an artificial neural network to characterize the relative suitability of environments for forest types in a complex tropical vegetation mosaic. Diversity and Distributions 5 (6), 263-274.

Horváth, L. 2008a. A földrajzi analógia alkalmazása klímaszcenáriók vizsgálatában (Use of spatial analogy for studying climate scenarios). In: Harnos, Zs., Csete, L. Klímaváltozás: környezet - kockázat - társadalom. Szaktudás Kiadó Ház, Budapest (in Hungarian)

Horváth, L. 2008b. Földrajzi analógia alkalmazása klímaszcenáriók elemzésében és értékelésében (Use of spatial analogy in analysis and valuation of climate scenarios). Dissertation, Corvinus University of Budapest, Budapest (in Hungarian)

Ibáñez, I., Clark, J.S., Dietze, M.C., Feeley, K., Hersh, M., Ladeau, S., Mcbride, A., Welch, N.E., Wolosin, M.S. 2006. Predicting Biodiversity Change: Outside the Climate Envelope, beyond the Species-Area Curve. Ecology 87 (8), 1896-1906.

Iverson, L.R., Prasad, A.M., Matthews, S.N., Peters, M. 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254 (3), 390-406.

Kovács-Láng, E., Kröel-Dulay, Gy., Czúcz, B. 2008. The impacts of climate change on the wildlife and our protecting and researching tasks [Az éghajlatváltozás hatásai a természetes élővilágra és teendőink a megőrzés és kutatás területén]. Természetvédelmi Közlemények 14 (1), 5-39. (in Hungarian) Mátyás, Cs., Berki, I., Czúcz, B., Gálos, B., Móricz, N., Rasztovits, E. 2010. Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silv. Lign. Hung. 6 (1), 91-110.

Moesz, G. 1911. Adatok Bars vármegye flórájához (Supplementary data of Bars county). Botanikai Közlemények 10 (5-6), 171-185. (in Hungarian)

Ogawa-Onishi, Y., Berry, P.M., Tanaka, N. 2010. Assessing the potential impacts of climate change and their conservation implications in Japan: A case study of conifers. Biological Conservation 143 (7), 1728-1736.

Özesmi, S.L., Özesmi, U. 1999. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological Modelling 116 (1), 15-31.

Özesmi, S.L., Tan, C.O., Özesmi, U. 2006, Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling 195 (1-2), 83-93.

Schmidt, G. 2006. Klíma- és időjárás-változás és a fás szárú dísznövények (Climate and weather change and the ornamental ligneous plants)] In: Csete, L., Nyéki, J. Klímaváltozás és a magyarországi kertgazdaság. „AGRO-21” Kutatási Programiroda, Budapest (in Hungarian)

Skov, F., Svenning, J.C. 2004. Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27 (3), 366-380.

Somlyay, L. 2003. A Muscari botryoides (L.) Mill. hazai alakkörének rendszertani-chorológiai vizsgálata (Taxonomic and chorological study of the Muscari botryoides (L.) Mill. complex in Hungary). Dissertation, Corvinus University of Debrecen, Debrecen (in Hungarian)

Stankowski, P.A., Parker, W.H. 2010. Species distribution modelling: Does one size fit all? A phytogeographic analysis of Salix in Ontario. Ecological Modelling 221 (13-14), 1655-1664.

Szabó, K., Bede-Fazekas, Á. 2012. A forgalomban lévő fásszárú dísznövénytaxonok szárazságtűrésének értékelése a klímaváltozás tükrében (Evaluation of the impact of climate change on current drought-tolerant woody plants). Kertgazdaság 44 (4), 62-73. (in Hungarian)

Van Leeuwen, B., Tobak, Z. 2008. GIS Solutions for Belvíz monitoring: A case study in Csongrád county, Hungary. XII. Symposium on Geomathematics, I. Croatian- Hungarian Geomathematical Conference, Mórahalom