Dataset for Creating Pedotransfer Functions to Estimate Organic Liquid Retention of Soils

Main Article Content

Hilda Hernádi
András Makó

Abstract

Soil properties characterising pressure-saturation relationships (P-S), such as the fluid retention values or the fitting parameter of retention curves are basic input parameters for simulating the behaviour and transport of nonaqueous phase liquids (NAPLs) in subsurface. Recent investigations have shown the limited applicability of the commonly used estimation methods for predicting NAPL retention values in environmental practice. Alternatively, building pedotransfer functions (PTFs) based on the easily measurable properties of soils might give more accurate and reliable results for estimating hydraulic propertie s of soils and enable the utilisation of the wide range of data incorporated in Hungarian and international datasets. In spite of the availability of several well-established PTFs to predict the water retention of soils only a limited amount of research has been done concerning the NAPL retention of soils. Thus, in our study, data from our recent NAPL and water retention mea surements were collected into a dataset containing the basic soil properties as well. Relationships between basic soil propert ies and fluid retention of soils with water or an organic liquid (Dunasol 180/220) were investigated with principal component analysis. NAPL retention of soil samples were determined with PTFs, based on basic soil properties and their d erived values, and using a scaling method. Result of the statistical analysis (SPSS 13.1) revealed that using PTFs could be a promising alte rnative and could give more accurate results compared to the scaling method both for determining the NAPL saturation or the volumetric NAPL retention values of soils.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hernádi, Hilda, and András Makó. 2014. “Dataset for Creating Pedotransfer Functions to Estimate Organic Liquid Retention of Soils”. Journal of Environmental Geography 7 (1-2):11-22. https://doi.org/10.2478/jengeo-2014-0002.
Section
Articles

Funding data

References

Acutis, M., Donatelli, M. 2003. SOILPAR 2.00: Software to estimate soil hydrological parameters and functions. European Journal of Agronomy 8 (3-4), 373-377. DOI: 10.1016/s1161-0301(02)00128-4

Beckett, G.D., Joy, S. 2003. Light Non-Aqueous Phase Liquid (LNAPL) Parameters Database. Version 2.0. Users Guide. American Petroleum Institute. Publ. 4731. Washington, DC.

Brooks, R. H., Corey, A. T., 1964. Hydraulic properties of porous media. Hydrology Paper No. 3. Colorado State University. Fort Collins, Colorado.

Brunauer, S., Emmett, P. H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society60 (2) 309-319. DOI: 10.1021/ja01269a023

Brutsaert, W. 1966. Probably laws for pore size distributions. SoilScience 101 85-92. DOI: 10.1097/00010694-196602000-00002

Buzás, I. 1993. Manual for soil and agrochemical analysis. INDA Kiadó, Budapest. (in Hungarian) Carsel, R.F., Parrish, R.S. 1988. Developing joint probability distribution of soil water retention characteristics. Water Resources Research 24 755-769. DOI: 10.1029/wr024i005p00755

Chen, J., Hopmanns, J. W., Grismer, M. E. 1999. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions. Advances in Water Resources 22, 479-493. DOI: 10.1016/s0309-1708(98)00025-6

DePastrovitch, T. L., Baradat, Y., Barthel, Y., Chiarelli, A., Fussel, D. R., 1979. Protection of groundwater from oil pollution. CONCAWE Rep. No 3/79. CONCAWE (Conservation of Clean Air and Water - Europe). The Hague. The Netherlands.

Fodor, N., Rajkai, K. 2011. Computer program (SOILarium 1.0) for estimating the physical and hydrophysical properties of soils from other soil characteristics. Agrokémia és Talajtan 60, 27-40.

Hernádi, H., Makó, A. 2010. Predicting oil retention of soils polluted with hydrocarbon derivates with pedotransfer functions. Mérnökgeológia- kőzetmechanika. Műegyetem Kiadó. Budapest. (in Hungarian)

Hernádi, H., Makó, A. 2011a. Predicting the oil retention of soils with different methods. In Farsang, A., Ladányi, Zs. (eds.) Talajvédelem supplementum (3-4), 363-371 (In Hungarian)

Hernádi, H., Makó, A., Kovács, J., Csatári, T. 2011b. Nonaqueousphase liquid retention of mineral mixture series containing different clay minerals. Communications in Soil Science and PlantAnalysis 44, 390-396. DOI: 10.1080/00103624.2013.742314

Lamorsky, K., Pachepsky, Y., Słavińsky, C., Walczak, R.T. 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science SocietyAmerica Journal 72, 1243-1247. DOI: 10.2136/sssaj2007.0280n

Lenhard, R .J., Parker, J. C., 1987. Measurement and prediction of saturation-pressure relations in three phase porous media systems. Journal of Contaminant Hydrology 1. 407-424. DOI: 10.1016/0169-7722(87)90017-9

Leverett, M. C. 1941. Capillary behavior in porous solids. Transactionsof the Society of Petroleum Engineers. American Institute ofMechanical Engineers 142, 152-169.

Lilly, A. 2010. A hydrological classification of UK soils based on soil morphological data. 19th World Congress of Soil Science, Soil Solutions for a Changing World 1 - 6 August 2010, Brisbane, Australia. Published on DVD.

Makó, A. 1995. Interactions between the porous phase of soils and organic liquids. PhD dissertation. Keszthely, Hungary. (in Hungarian)

Makó, A. 2002. Measuring and estimating the pressure-saturation curves on undisturbed soil samples using water and NAPL. Agrokémia és Talajtan 51, 27-36.

Makó, A. 2005. Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Communicationin Soil Science and Plant Analysis 36, 439-453. DOI: 10.1081/css-200043170

Makó A., Elek, B. 2006. Comparison of soil extraction isotherms of soil samples saturated with nonpolar liquids. Water, Air andSoil Pollution 6, 331-342. DOI: 10.1007/s11267-005-9026-x

Makó, A., Hernádi H. 2013. Hydrocarbon derivates in soils: Soil physical researches. Monography. (in Hungarian)

Makó, A., Marczali, Zs. 1999b. Laboratory measurement of the soils fluid retention concerning the organic liquid retention. XIII. Országos Környezetvédelmi Konferencia és Szakkiállítás. Siófok. 14-16. szept. 1999. 147-153. (In Hungarian)

Makó, A., Máté, F., Németh, T., Hernádi H. 2004. The temperaturedependence of the NAPL retention of different soils. 12th International Poster Day and Institute of Hydrology Open Day: Transport of water, chemicals and energy in the soil-plantatmosphere system. 25th November 2004. Bratislava. Slovak Republik.

Makó, A., Rajkai, K., Tóth, G., Hermann, T. 2005. Estimating soil water retention characteristics from the soil taxonomic classification and mapping informations: consideration of humus categories. Cereal Research Communications 34, 199-201. DOI: 10.1556/crc.33.2005.1.27

McBratney, A. B., Minasny B., Cattle S. R., Vervoort R. W. 2002. From pedotransfer functions to soil inference systems. Geoderma 109, 41-73. DOI: 10.1016/s0016-7061(02)00139-8

Minasny, B., McBratney, A. B., Bristow, K. L. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93, 225-253. DOI: 10.1016/s0016-7061(99)00061-0

Minasny, B., J., Hopmans, J. W., Harter, T., Eching, S. O., Tuli, A., Denton, M. A. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal 68, 417-429. DOI: 10.2136/sssaj2004.4170

Nemes, A., Schaap, M. G., Wösten, J. H. M. 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America Journal 67, 1093-1102. DOI: 10.2136/sssaj2003.1093

Nemes, A., Roberts, R. T., Rawls, W. J., Pachepsky, Y. A., van Genuchten, M. T. 2008. Software to estimate -33 and -1500 kPa soil water retention using the non-parametric k-nearest neighbor technique. Environmental Modelling & Software 23 (2), 254-255. DOI: 10.1016/j.envsoft.2007.05.018

Pachepsky, Y. A., Rawls, W. J. (Eds.) 2004. Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science. Elsevier. Amsterdam.

Parker, J.C., Lenhard, R.J., Kuppusamy,T. 1987. A parametric model for constitutive properties governing multi-phase flow in porous media. Water Resources Research 23, 618-624. DOI: 10.1029/wr023i004p00618

Petersen, G. W., Cunnungham, R. L., Matelski, R.P. 1968. Moisture characteristics of Pennsylvania soils II. Soil factors affecting moisture retention within a textural class - silt loam. Soil ScienceSociety America Proceedings 32, 866-870. DOI: 10.2136/sssaj1968.03615995003200060042x

Rajkai, K. 1988. Relationships between water retention and different soil properties. Agrokémia és Talajtan 36-37, 15-30. (In Hungarian)

Rajkai K. 2004. The quantity, distribution and transport of water in soil. RISSAC, Research Institute for Soil Sciences and Agricultural Chemistry. Budapest. (In Hungarian)

Rajkai, K., Kabos, S., van Genuchten, M. T., Jansson, P. E. 1996. Estimation of water-retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Science 161, 832-845. DOI: 10.1097/00010694-199612000-00003

Rajkai, K., Kabos, S., van Genuchten, M. T., 2004. Estimating the water retention curve from soil properties: Comparison of linear, nonlinear and concomitant variable methods. Soil and Tillage Research 79. (2) 145-152. DOI: 10.1016/j.still.2004.07.003

Rathfelder, K., Abriola, L. M. 1996. The influence of capillarity in numerical modelling of organic liquid redistribution in twophase systems. Advances in Water Resources 21 (2), 159-170. DOI: 10.1016/s0309-1708(96)00039-5

Rawls, W. J., Brakensiek, D. L., 1985. Prediction of soil water properties for hydrologic modeling. In: Watershed Management in the 1980s. Proceeding of Symposium of Irrig. Drainage Div., Denver, CO., April 30-May 1, 1985. American Society of Civil Engineers. New York. 293-299.

Rawls, W. J., Pachepsky, Y. A., Shen, M. H., 2001. Testing soil water retention estimation with the MUUF pedotransfer model using data from the southern United States. Journal of Hydrology 251. 177-185. DOI: 10.1016/s0022-1694(01)00467-x

Rawls, W.J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., Bloodworth, H. 2003. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 1 (16), 61-71. DOI: 10.1016/s0016-7061(03)00094-6

Saxton, K. E., Rawls, W. J. 2006. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society America Journal 70, 1569-1578. DOI: 10.1016/s0016-7061(03)00094-6

Schaap, M. G., Leij, F. J., van Genuchten, M. T. 1999. A bootstrapneural network approach to predict soil hydraulic parameters. In: Proceedings of International Workshop Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media 1237-1250.

Schaap, M. G., Leij, F. J., van Genuchten, M. T. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251, 163-176. DOI: 10.1016/s0022-1694(01)00466-8

Tietje, O., Tapkenhinrichs, M. 1993. Evaluation of pedo-transfer functions. Soil Science Society of America Journal 57, 1088-1095. DOI: 10.2136/sssaj1993.03615995005700040035x

Tóth, B. 2011. Calculation and characterization of water retention of major Hungarian soil types using soil survey information. PhD dissertation. Keszthely. (in Hungarian)

Tóth, B., Makó, A., Rajkai, K., Kele, Sz. G., Hermann, T., Marth, P. 2006. Use of soil water retention capacity and hydraulic conductivity estimation in the preparation of soil water management maps. Agrokémia és Talajtan 55, 49-58. DOI: 10.1556/agrokem.55.2006.1.6

Tóth, B., Makó, A., Tóth, G., Farkas, C., Rajkai, K. 2013. Comparison of pedotransfer functions to estimate the van Genuchten parameters from soil survey information. Agrokémia és Talajtan 62 (1), 5-22. (in Hungarian)

van Genuchten M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science SocietyAmerican Journal 44, 892-989. DOI: 10.2136/sssaj1980.03615995004400050002x

Vereecken, H., Maes, J., Feyen, J., Darius, P. 1989. Estimaing the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Science 148, 389-403. DOI: 10.1097/00010694-198912000-00001

Wösten, J. H. M., Schuren, C. H. J. E. Bouma, J., Stein, A. 1990. Functional sensivity analysis of four methods to generate soil hydraulic functions. Soil Science Society of America Journal 54, 832-836. DOI: 10.2136/sssaj1990.03615995005400030036x

Wösten, J.H.M., Finke, P.A., Janses, M.J.W. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66, 227-237. DOI: 10.1016/0016-7061(94)00079-p

Wösten, J. H. M., Lilly, A., Nemes, A., Le Bas, C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185. DOI: 10.1016/s0016-7061(98)00132-3

Weawer, J. L., Charbeneau, R. J., Tauxe, J. D., Lien, B. K., Provost, J. B. 1994. The hydrocarbon spill screening model (HSSM). 1. US EPA. EPA/600/R-94/039a.