Tool for Drought Monitoring in the Danube Region – Methods and Preliminary Developments

Main Article Content

Andreea Bucur
Gregor Gregorič
Aleš Grlj
Žiga Kokalj
Andreja Sušnik

Abstract

Drought is a naturally recurring phenomenon of the climate system that affects virtually all regions of the world. During the past decades extreme droughts with extensive negative effects on ecosystems became evident also in the Danube region. At the moment regional capacity to monitor drought is still very diverse and not synchronised among different countries. In this is paper, we present a recently developed drought monitoring tool – the Drought User Service (DUS) for the Danube region using remote-sensing products which aims at offering a more accurate and in near-real-time monitoring via different drought indices. The DUS was created as the monitoring tool of the risk-based paradigm, which seeks to give information in near real-time about the location and severity of droughts throughout the Danube region. Satellite remote sensing products meet the requirements for operational monitoring because they are able to offer continuous and consistent measurements of variables, which can be used to assess the severity, spatial extent and impacts of drought. In the DUS three different variables – vegetation, soil moisture and precipitation – are monitored with earth observation products. The condition of vegetation and soil moisture is tracked with two simple indicators computed as long-term anomalies of the NDVI and SWI products made available through EU’s Copernicus Global Land Service. The importance of DUS and of the developed methods for faster detection of drought onset as useful foundation for establishing a better pro-active drought management in order to mitigate the negative effects of drought in the region is discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bucur, Andreea, Gregor Gregorič, Aleš Grlj, Žiga Kokalj, and Andreja Sušnik. 2018. “Tool for Drought Monitoring in the Danube Region: – Methods and Preliminary Developments”. Journal of Environmental Geography 11 (3-4):67-75. https://doi.org/10.2478/jengeo-2018-0014.
Section
Articles

References

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., Martin, E. 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences 12(6), 1323–1337. DOI: 10.5194/hess-12-1323-200810.5194/hess-12-1323-2008

Anyamba, A., Tucker, C. J. 2012. Historical perspective of AVHRR NDVI and vegetation drought monitoring. in Remote Sensing of Drought: Innovative Monitoring Approaches. Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds, CRC Press, 23–49.

Bartalis, Z., Scipal, K., Wagner, W. 2006. Azimuthal anisotropy of scatterometer measurements over land. IEEE Transactions on Geoscience and Remote Sensing 44(8), 2083–2092. DOI: 10.1109/tgrs.2006.872084

Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J. Anderson, C. 2007. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophysical Research Letters 34 (20). DOI: 10.1029/2007gl03108810.1029/2007gl031088

Bartalis, Z., Naemi, V., Hasenauer, S., Wagner, W. 2008. ASCAT Soil Moisture Product Handbook. ASCAT Soil Moisture Report Series, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology (15).

Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T., Modanesi, S., Ciabatta, L., Massari, C., Brocca, L. and Wagner, W. 2018. Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering. Remote Sensing 10(7), 1030. DOI: 10.3390/rs1007103010.3390/rs10071030

Bittner, K., Spence, I. 2004. Use Case Modeling. Boston, USA.

Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Jacobs, C., Mentaschi, L., Lavalle, C., De Roo, A. 2018. Impact of a changing climate, land use, and water usage on water resources in the Danube river basin, EUR 29228 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-85889-5, DOI: 10.2760/89828, JRC111817

Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., Reed, B. C. 2008. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing, 45(1), 16–46. DOI: 10.2747/1548-1603.45.1.1610.2747/1548-1603.45.1.16

Bucur, A., Wagner, W., Elefante, S., Naeimi, V., Briese, C. 2018. Development of an Earth Observation Cloud Platform in Support to Water Resources Monitoring. In Earth Observation Open Science and Innovation. Springer, Cham, 275–283.

Ceglar, A., Medved-Cvikl, B., Kajfež-Bogataj, L., Honzak, L., Kobal, M., Eler, K. 2012. The development of drought monitoring system: from statistic to disturbed web maps. Razvoj sistema za spremljanje suš: Od statičnih do porazdeljenih spletnih zemljevidov. Geografski informacijski sistemi v Sloveniji 2011–2012. Ljubljana (in Slovenian).

Copernicus Global Land Service (CGLS). 2018. Available online at: <http://land.copernicus.eu/global/products> (accessed 20 September 2018).

Danube regional project, UNDP & GEF, 2012. http://www.undpdrp.org/drp/danube_morphology_and_climate.html.

Dewfora project, 2013. Drought Early warning and Forecasting to strengthen preparedness and adaptation in Africa. European Centre for Medim-Range Weather Forecasts – ECMWF. https://www.ecmwf.int/en/research/projects/dewfora. (accessed 20.11.2018).

DriDanube, 2018. Drought Risk in the Danube Region. Interreg-Danube Transnational Programme. http://www.interreg-danube.eu/approved-projects/dridanube. (accessed 20.11.2018).

Drought R&SPI, 2015. Drought R&SPI project, fostering European Drought Research and Science-Policy Interfacing. http://www.eu-drought.org/ (accessed 20.11.2018).

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE 98(5), 704–716. DOI: 10.1109/jproc.2010.204391810.1109/jproc.2010.2043918

EOX, 2017. Sentinel 2 Cloudless. <https://eox.at/2017/08/sentinel-2-global-cloudless-mosaic/> (accessed 25.9.2018).

EUMETSAT, 2015. ASCAT Product Guide – v05 (EUM/OPSEPS/MAN/04/0028). <https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/MetopDesign/ASCAT/index.html?lang=EN> (accessed 20.9.2018).

European Commission, 2018. European Commission, International cooperation and development. Euroclima. https://ec.europa.eu/europeaid/tags/euroclima_en (accessed 20.11.2018). Eurostat, 2018. NUTS.

<http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts.> (accessed 25.9.2018).

Fick, S., Hijmans, R. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. DOI: 10.1002/joc.5086.10.1002/joc.5086

Google, 2018. Google Map. <https://www.google.si/maps/> (accessed 25.9.2018).

Gouveia, C., Trigo, R. M., DaCamara, C. C. 2009. Drought and vegetation stress monitoring in Portugal using satellite data. Natural Hazards and Earth System Sciences 9(1), 185–195. DOI: 10.5194/nhess-9-185-200910.5194/nhess-9-185-2009

Hasenauer, S., Mistelbauer, T., Kokalj, Ž., Grlj, A., Hochströger, S., Bucur, A., Bartošová, L. 2017. User Requirements Document including design of interactive user interface Version 1.0. Elaborat. EODC, SPACE-SI, TU Wien. Dunaj, Avstrija.

Hayes, M. J., Svoboda, M. D., Wardlow, B. D., Anderson, M. C., Kogan, F. 2012. Drought monitoring: Historical and current perspectives in: Remote Sensing of Drought: Innovative Monitoring Approaches; Wardlow, BD, Anderson, MC, Verdin, JP, Eds, 1–19.

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p.

Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C., Juglea, S.E. 2010. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE 98(5), 666–687. DOI: 10.1109/jproc.2010.204303210.1109/jproc.2010.2043032

Kogan, F., Sullivan, J. 1993. Development of global drought-watch system using NOAA/AVHRR data. Advances in Space Research 13(5), 219–222. DOI: 10.1016/0273-1177(93)90548-p10.1016/0273-1177(93)90548-p

Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., Nelson, F. E. 2011. Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography 35(1), 65–86. DOI: 10.1177/030913331038651410.1177/0309133310386514

Mishra, A. K., Singh, V. P. 2010. A review of drought concepts. Journal of Hydrology 391(1-2), 202–216. DOI: 10.1016/j.jhydrol.2010.07.01210.1016/j.jhydrol.2010.07.012

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., Wagner, W. 2009. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Transactions on Geoscience and Remote Sensing 47(7), 1999–2013. DOI: 10.1109/tgrs.2008.201161710.1109/tgrs.2008.2011617

Nghiem, S. V., Wardlow, B. D., Allured, D., Svoboda, M. D., LeComte, D., Rosencrans, M., LeComte, D., Rosencrans, M., Chan, S.K., Neumann, G. 2012. Microwave Remote Sensing of Soil Moisture in Remote Sensing of Drought: Innovative Monitoring Approaches; Wardlow, BD, Anderson, MC, Verdin, JP, Eds, 197–226.

Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., Nghiem, S.V. 2003. Soil moisture retrieval from AMSR-E. IEEE transactions on Geoscience and remote sensing 41(2), 215–229. DOI: 10.1109/tgrs.2002.80824310.1109/tgrs.2002.808243

OSM, 2018. OpenStreetMap. <https://www.openstreetmap.org> (accessed 25.9.2018)

Paulik, C. 2017. Copernicus Global Land Operations, “Vegetation and Energy”, “CGLOPS-1”, Framework Service Contract N° 199494 (JRC), Product User Manual: Soil Water Index (SWI) – Version 3.0 Surface State Flag (SSF) – Version 2.0, SWI10 – Version 3.0, SWI-TS – Version 3.0. Document-No. CGLOPS1_PUM_SWIV3-SWI10-SWI-TS, Issue I2.50, VITO.

Petropoulos, G. P., Ireland, G., Barrett, B. 2015. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83, 36–56. DOI: 10.1016/j.pce.2015.02.00910.1016/j.pce.2015.02.009

Sepulcre-Cantó, G., Horion, S., Singleton A., Carrão, H., Vogt, J. 2012. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Natural Hazards and Earth System Sciences 12, 3519–3531. DOI: 10.5194/nhess-12-3519-201210.5194/nhess-12-3519-2012

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J. 2010. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews 99(3-4), 125–161. DOI: 10.1016/j.earscirev.2010.02.00410.1016/j.earscirev.2010.02.004

Smets, B., Jacobs, T., Swinnen, E., Toté, C., Wolfs, D. 2018. Gio Global Land Component – Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Product User Manual, Normalized Difference Vegetation Index (NDVI), Collection 1km, Version 2.2. Document-No. GIOGL1_PUM_NDVI1km-V2.2, Issue I2.31, VITO.

Swinnen, E., Toté, C. 2017. Gio Global Land Component – Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Algorithm Theoretical Basis Document, Normalized Difference Vegetation Index (NDVI), Collection 1km, Version 2.2. Document-No. GIOGL1_ATBD_NDVI1km-V2, Issue I2.21, VITO.

Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150. DOI: 10.1016/0034-4257(79)90013-0

Van Lanen, H.A.J., Vogt, J.V., Andreu, J., Carrão, H., De Stefano, L., Dutra, E., Feyen, L., Forzieri, G., Hayes, M., Iglesias, A., Lavaysse, C., Naumann, G., Pulwarty, R., Spinoni, J., Stahl, K., Stefanski, R., Stilianakis, N., Svoboda, M., Tallaksen, L.M. 2017. Climatological risk: droughts. In: Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I. (Eds.). Science for disaster risk management 2017. knowing better and losing less. EUR 28034 EN, Publications Office of the European Union, Luxembourg, Chapter 3.9. DOI: 10.2788/688605.10.2788/688605

Wagner, W. 1998. Soil moisture retrieval from ERS scatterometer data (Doctoral dissertation, European Commission, Joint Research Centre, Space Applications Institute).

Wagner, W., Lemoine, G., Borgeaud, M., Rott H., 1999a. A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing 37, 938–948. DOI: 10.1109/36.75221210.1109/36.752212

Wagner, W., Lemoine, G., Rott H. 1999b. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 70, 191–207. DOI: 10.1016/s0034-4257(99)00036-x10.1016/s0034-4257(99)00036-x

Wagner, W., Noll, J., Borgeaud, M., Rott H..1999c. Monitoring soil Moisture over the Canadian Prairies with the ERS Scatterometer. IEEE Trans. Geosci. Rem. Sens. 37, 206–216. DOI: 10.1109/36.73915510.1109/36.739155

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J. 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift 22(1), 5–33. DOI: 10.1127/0941-2948/2013/039910.1127/0941-2948/2013/0399

Watkiss, P., Horrocks, L., Pye, S., Searl, A., Hunt, A. 2009. Impacts of climate change in human helth in Europe. Peseta-Human helth study. European Commission-Joint Research Centre. Seville, Spain, 60p.

WMO (World Meteorological Organisation) and GWP (Global Water Partnership), 2016. Handbook of drought indicators and indices, Svoboda, M., Fuchs, B. Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines 2. Geneva