Effect of Climate Change on the Hydrological Character of River Maros, Hungary-Romania

Main Article Content

György Sipos
Viktória Blanka
Gábor Mezősi
Tímea Kiss
Boudewijn van Leeuwen

Abstract

It is highly probable that the precipitation and temperature changes induced by global warming projected for the 21st century will affect the regime of Carpathian Basin rivers, e.g. that of River Maros. As the river is an exceptionally important natural resource both in Hungary and Romania it is necessary to outline future processes and tendencies concerning its high and low water hydrology in order to carry out sustainable cross-border river management. The analyses were based on regional climate models (ALADIN and REMO) using the SRES A1B scenario. The modelled data had a daily temporal resolution and a 25 km spatial resolution, therefore beside catchment scale annual changes it was also possible to assess seasonal and spatial patterns for the modelled intervals (2021- 2050 and 2071-2010). Those periods of the year are studied in more detail which have a significant role in the regime of the river. The study emphasizes a decrease in winter snow reserves and an earlier start of the melting period, which suggest decreasing spring flood levels, but also a temporally more extensive flood season. Changes in early summer precipitation are ambiguous, and therefore no or only slight changes in runoff can be expected for this period. Nevertheless, it seems highly probable that during the summer and especially the early autumn period a steadily intensifying water shortage can be expected. The regime of the river is also greatly affected by human structures (dams and reservoirs) which make future, more detailed modelling a challenge.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sipos, György, Viktória Blanka, Gábor Mezősi, Tímea Kiss, and Boudewijn van Leeuwen. 2014. “Effect of Climate Change on the Hydrological Character of River Maros, Hungary-Romania”. Journal of Environmental Geography 7 (1-2):49-56. https://doi.org/10.2478/jengeo-2014-0006.
Section
Articles

Funding data

References

Andó, M. 1993. The geography of the Mures River. Acta GeographicaSzegediensis 31, 1-9.

Andó, M. 2002. A Tisza vízrendszer hidrogeográfiája. SZTE Természeti Földrajzi Tanszék, Szeged.

Bartholy, J., Pongrácz, R., Gelybó, Gy., Szabó P. 2008. Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Időjárás Quarterly Journal of theHungarian Meteorological Service 112, 249-264.

Bell, V.A., Kay, A.L., Cole, S.J., Jones, R.G., Moore, R.J., Reynard, N.S. 2012. How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. Journal of Hydrology 442-443, 89-104. DOI: 10.1016/j.jhydrol.2012.04.001

Boga, L., Nováky, B. 1986. Magyarország vizeinek műszakihidrológiai jellemzése: Maros. Vízgazdálkodási Intézet, Budapest.

Boyer, C., Chaumont, D., Chartier, I., Roy, A.G. 2010. Impact of climate change on the hydrology of St. Lawrence tributaries. Journal of Hydrology 384, 65-83. DOI: 10.1016/j.jhydrol.2010.01.011

Chang, H., Jung, I.W. 2010. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology 388 (3-4), 186-207. DOI : 10.1016/j.jhydrol.2010.04.040

Cubasch, U., Meehl, G., Boer, G., Stouffer, R. , Dix, M., Noda, A., Senior, C., Raper, S., Yap, K. 2001. Projections of Future Climate Change. In. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.). Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 525-582.

Csoma, J. 1975. A Maros hidrográfiája. In. Vízrajzi Atlasz Sorozat 19 Maros.VITUKI, Budapest. 7-12.

Csorba, P., Blanka, V., Vass, R., Nagy, R.,Mezősi, G. 2012. Hazai tájak működésének veszélyeztetettsége új klímaváltozási előrejelzés alapján. Földrajzi Közlemények 136(3), 237-253.

Dikau, R., Schrott, L. 1999. The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): main objectives and results.Geomorphology 30, 1-12. DOI: 10.1016/S0169-555X(99)00040-9

Dobler, C., Bürger, G., Stötter, J. 2012. Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. Journal of Hydrology 460-461, 29-39. DOI : 10.1016/j.jhydrol.2012.06.027

Giorgi, F. 1990. Simulation of regional climate using a limited area model nested in a general circulation model. Journal ofClimatology 3, 941-963. DOI : 10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2

Giorgi, F., Bates, G., 1989. The Climatological Skill of a Regional Model over Complex Terrain. Monthly Weather Review 117, 2325-2347. DOI :10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2

Hawkins, E., Sutton, R., 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of AmericanMeteorological Society 90, 1095-1107. DOI : 10.1175/2009BAMS2607.1

Horányi, A., Csima, G., Szabó, P., Szépszó, G. 2009. Regionális klímamodellezés az Országos Meteorológiai Szolgálatnál. MTA előadás 2009.09.15. (http://www.met.hu/doc/tevekenyseg/klimamodellezes/MTA-2009.09.15.pdf)

IPCC 2007. Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC. Edited by S. Solomon, D. Qin, M. Manning,Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Intergovernmental Panel on Climate Change, Cambridge University Press, New York, p. 996 (http://www.ipcc.ch)

Kay, A.L., Jones, R.G., Reynard, N.S. 2006. RCM rainfall for UK flood frequency estimation. II. Climate change results. Journalof Hydrology 318, 163-172. DOI: 10.1016/j.jhydrol.2005.06.013

Kiss, T., Blanka V. 2012. River channel response to climate- and human-induced hydrological changes: case study on the meandering Hernád River, Hungary. Geomorphology 175-176, 115-125. DOI: 10.1016/j.geomorph.2012.07.003

Kiss, T, Sipos, Gy. 2007. Braid-scale geometry changes in a sandbedded river: Significance of low stages. Geomorphology 84, 209-221. DOI: 10.1016/j.geomorph.2006.01.041

Kiss, T, Sümeghy, B., Sipos, Gy. 2013. Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology 204, 49-60. DOI: 10.1016/j.geomorph.2013.07.028

Konecsny, K. 2010: A kisvizek főbb statisztikai jellemzői a Maros folyó alsó szakaszán. Hidrológiai Közlöny 90(1), 45-55.

Konecsny, K., Bálint, G. 2010. Low water related hydrological hazards along the lower Mureş/Maros river. In Riscuri şi catastrofe, Universitatea „Babeş-Bolyai”. Facultatea de Geografie. Laboratorul de riscuri şi hazarde. Casa Cărţii de Ştiinţă. Cluj- Napoca 8/6 van der Linden P., Mitchell J.F.B. (eds.) 2009. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK. (http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf)

Koutroulis, A.G., Tsanis, I.K., Daliakopoulos, I.N., Jacob, D. 2013. Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology 479, 146-158. DOI: 10.1016/j.jhydrol.2012.11.055

Lorenzo-Lacruz, J., López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., Cuadrat, J.M. 2010. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology 386 (1-4), 13-26.

Nakicenovic, N., Swart, R. 2000: Emissions Scenarios. A Special Report of IPCC Working Group III. Cambridge University Press, Cambridge, UK. 570p.

Smith, V.B., David, C.H., Cardenas, M.B., Yang Z.L. 2013. Climate, river network, and vegetation cover relationships across a climate gradient and their potential for predicting effects of decadal-scale climate change. Journal of Hydrology 488, 101-109. DOI: 10.1016/j.jhydrol.2013.02.050

Szabó, P., Horányi, A., Kruzselyi, I., Szepszó, G. 2011. Az Országos Meteorológiai Szolgálat regionális klímamodellezési tevékenysége: ALADIN-Climate és REMO. 36. Meteorológiai Tudományos Napok beszámolókötete. Budapest, 87-101.

Szepszó, G., Zsebeházi, G. 2011. Az ENSEMBLES projekt regionális modelleredményeinek alkalmazhatósága Magyarország éghajlatának jellemzésére. 36. Meteorológiai Tudományos Napok beszámolókötete. Budapest, 59-75.

Szepszó, G., Bartholy, J., Csima, G., Horányi, A., Hunyady, A., Pieczka, I., Pongrácz, R., Torma, Cs. 2008. Validation of different regional climate models over the Carpathian Basin. EMS8/ECAC7 Abstracts 5, EMS2008-A-00645.

Veijalainen, N., Lotsari, E., Alho, P., Vehviläinen, B., Käyhkö, J. 2010. National scale assessment of climate change impacts on flooding in Finland. Journal of Hydrology 391 (3-4), 323-350. DOI: 10.1016/j.jhydrol.2010.07.035

Zeng, X., Kundzewicz, Z. W., Zhou, J., Su, B. 2012. Discharge projection in the Yangtze River basin under different emission scenarios based on the artificial neural networks. Journal ofHydrology 282, 113-121. DOI: 10.1016/j.quaint.2011.06.009