Creating excess water inundation maps by sub-pixel classification of medium resolution satellite images

Main Article Content

László Mucsi
László Henits

Abstract

Excess water frequency factor, which indicates the number of inunda-tions in the area under study within a certain period of time, is the most dynamic variable among the parameters applied in the complex meth-odology of excess water hazard mapping. Creating excess water inun-dation maps, representing the situation in the most realistic way, was hitherto a critical moment in excess water hazard mapping. Instead of field measurements, since the database of Landsat satellite images became accessible in 2009, it is possible to process satellite images taken from the year 1985, with using new, non-traditional methods different from the pixel-based classification. These methods are mainly sub-pixel based classifications and they are applied principally on images taken in periods of extended excess water inundation, under clear weather conditions. In our research project, medium-scale map-ping was supported principally by hand-held or mounted multispectral (the bands of visible and infrared light) digital aerial photography. The photo-taking process, depending on the actual meteorological condi-tions, can be flexibly accomplished in the most extended inundation period, thus it is possible to create excess water maps at the scale of 1:10000.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mucsi, László, and László Henits. 2010. “Creating Excess Water Inundation Maps by Sub-Pixel Classification of Medium Resolution Satellite Images”. Journal of Environmental Geography 3 (1-4):31-40. https://doi.org/10.14232/jengeo-2010-43788.
Section
Articles

References

Boardman J. W. 1994. Geometric mixture analysis of imaging spectrometry data, Proc. Int. Geoscience and Remote Sensing Symp., vol. 4, pp. 2369-2371

Chander G. – Markham B. L. Revised Landsat-5 TM Radiometric Calibration Procedures, and Post-Calibration Dynamic Ranges, IEEE Transactions on Geoscience and Remote Sensing 41/11 (2003): 2674–2677

Chavez P.S. jr. Image-based atmospheric corrections – Revisited and Improved. Photogrammetric Engineering and Remote Sensing 62/9 (1996): 1025-1036

Csekő Á. 2003. Árvíz- és belvízfelmérés radar felvételekkel [Flood- and excess water mapping based on radar images] Geodézia és Kartográfia, 55/2 (2003): 16-22

Csornai G. – Lelkes M. – Nádor G. – Wirnhardt Cs. Operatív árvíz- és belvízmonitoring távérzékeléssel. [Operative monitoring of floods and excess water based on remote sensing] Geodézia és Kartográfia 52/5 (2000): 6-12

Green A. A. – Berman M. – Switzer P. – Craig M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing 26 (1988): 65-74

Licskó B. 2009 Belvizek légi felmérésének tapasztalatai, [The experiences of the aerial photography of excess water] Magyar Hidrológiai Társaság XXVII. Országos Vándorgyűlés, Baja 2009. http://www.hidrologia.hu/vandorgyules/27/dolgozatok/4szekcio.html

Pálfai I. Belvízgyakoriság és belvízkárok Magyarországon [The frequency of excess water events and the damages caused in Hungary]. Hidrológiai Közlöny 86/5 (2006): 25-26

Pálfai I. – Bozán Cs. – Herceg Á. – Kozák P. – Körösparti J. – Kuti L. – Pásztor L. 2004. Komplex Belvíz-veszélyeztetettségi Mutató (KBM) és Csongrád megye ez alapján szerkesztett belvíz-veszélyeztetettségi térképe, [Mapping of excess water hazard in Csongrád county based on the Complex Excess Water Hazard Index] II. Magyar Földrajzi Konferencia. Szeged, 2004. szeptember 2-4. ISBN 963 482 687 3

Rashed T. – Weeks J. R. – Gallada M. S. Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: a case study of the greater Cairo region, Egypt. Geocarto International 16/4 (2001): 5-15

Rakonczai J.  Mucsi L.  Szatmári J.  Kovács F.  Csató Sz. 2001. A belvizes területek elhatárolásának módszertani lehetőségei. [Methodological possibilities for mapping excess water areas] In: A Magyar Földrajzi Konferencia tudományos közleményei CD. ISBN 9634825443. Szeged

Roberts D. A. − Gardner M. − Church R. − Ustin S. – Scheer G. − Green R. O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models, Remote Sensing of Environment 65 (1998): 267–279

Smith M. O. – Johnson P. E. – Adams J. J. 1985. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis, Journal of Geophysical Research 90. C797–C804