Discharge calculation of paleochannels on the alluvial fan of the Maros river, Hungary

Main Article Content

Borbála Sümeghy
Tímea Kiss

Abstract

The aim of the study was to identify the abandoned channels on the alluvial fan of the Maros River and to calculate their paleodischarge. As the first step of the investigation regional equations had to be made for discharge calculations based on the earliest available discharge data for the rivers of the Tisza catchment in Hungary. Equations between discharge and channel parameters were created with high correlation coefficient. Then the paleochannels were identified on the Hungarian part of the alluvial fan. The paleochannel generations are located in continuous zones with well defined boundaries. The density of the abandoned channels varies on the alluvial fan, as some areas densely covered by channels and on other areas almost free of paleochannels. Braided, meandering and misfit channels were separated, but only the morphometry of the meandering and misfit channels were measured (width, ratio of curvature, half-wavelength and cord-length). Based on these morphometric parameters and the discharge equations the mean discharge of the channels was calculated. The greatest discharge was around 6300 m3/s while the smallest was 31 m3/s. However, several abandoned meandering channels had slightly greater bankfull discharge (700-900 m3/s) as the present-day Maros River.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sümeghy, Borbála, and Tímea Kiss. 2011. “Discharge Calculation of Paleochannels on the Alluvial Fan of the Maros River, Hungary”. Journal of Environmental Geography 4 (1-4):11-17. https://doi.org/10.14232/jengeo-2011-43791.
Section
Articles

Funding data

References

Andó M. 1976. Groundwater-geographical and hydrogeological conditions of the talus system of the River Maros. Acta Geographica Szegediensis 16: 39-57

Andó M. 2002. A Tisza vízrendszer hidrogeográfiája. Szeged: Szegedi Tudományegyetem, TFGT. 89-107

Borsy Z. 1989. Az Alföld hordalékkúpjának negyedidőszaki fejlődéstörténete. Földrajzi Értesítő 38/3-4: 211-224

Benito G. – Thorndycraft V. R. 2005. Palaeoflood hydrology and its role in applied hydrological sciences. Journal of Hydrology 313: 3-15

Carson E. C. – Munroe J. S. 2005. Tree-ring based streamflow reconstruction for Ashley Creek, NE Utah: implications for palaeohydrology of the southern Uinta Mountains. The Holocene 15/4: 602- 611

Dury G. H. 1961. Bankfull discharge: an example of its statistical relationships. Bull. Int. Ass. Scientific Hydrology 6/3: 48-55

Fiala K. – Sipos Gy. – Kiss T. 2006. Szabályozások hatására bekövetkező morfológiai változások a Tisza és a Maros alsó szakaszán. In Kiss A. – Mezősi G. – Sümeghy Z. (eds.) Táj, környezet és társadalom/Landscape, environment and society. Szeged: SZTE-TFGT. 203-213

Gábris Gy. 1986. Alföldi folyóink holocén vízhozamai. Alföldi Tanulmányok 10: 35-48

Gábris Gy. 1995. A paleohidrológiai kutatások újabb eredményei. Földrajzi Értesítő 44: 101-109

Hidrológiai Évkönyvek / Hydrological Annals. Budapest: VITUKI. 1970-2000.

Kiss T. – Fiala K. – Sipos Gy. 2008. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98:96-110

Laczay I. 1982. A folyószabályozás tervezésének morfológiai alapjai. Vízügyi Közlemények 64: 235-255

Lauriol B. – Duguay C. R. – Riel A. 2002. Response of the Porcupine and Old Crow rivers in northern Yukon, Canada, to Holocene climatic change. The Holocene 12/1: 27-34

Márton Gy. 1914. A Maros alföldi szakasza és fattyúmedrei. Földrajzi Közlemények 52: 282-301

Mike K. 1975. A Maros geomorfológiája, A Maros kialakulása és fejlődése. In: Csoma J. – Laczay I. (eds.) Vízrajzi Atlasz Sorozat 19: Maros. Budapest: VITUKI. 14-18

Mike K. 1991. Magyarország ősvízrajza és felszíni vizeinek története. Budapest: Aqua Kiadó. 361-577

Molnár B. 2007. A Maros folyó kialakulása és vízgyűjtő területének földtani felépítése. Hidrológiai Közlöny 87/2: 27-30

Nádor A. – Thamó-Bozsó E. – Magyari Á. – Babinszki E. 2007. Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sedimentary Geology 202: 174-192

Saenger C. – Cronin T. – Thunell R. – Vann C. 2006. Modelling river discharge and precipitation from estuarine salinity in the northern Chesapeake Bay: application to Holocene palaeoclimate. The Holocene 16/4: 467-477

Scheurle C. – Hebbeln D. – Jones P. 2005. An 800-year reconstruction of Elbe River discharge and German Bight seasurface salinity. The Holocene 15/3: 429-434

Sidorchuk A. Y. – Borisova O. K. 2000. Method of paleogeographical analogues in paleohydrological reconstructions. Quaternary International 72: 95-106

Sipos Gy. 2004. Medermintázat és zátonyképződés homokos medrű síksági folyószakaszon (Maros 31-50 fkm). Geográfus Doktoranduszok VIII. Országos Konferenciája, Szeged. CD. ISBN: 963-482-687-3

Stein R. – Dittmers K. – Fahl K. – Kraus M. – Matthiessen J. – Niessen F. – Pirrung M. – Polyakova Y. – Schoster F. – Steinke T. – Fütterer D. K. 2004. Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record. Quaternary Science Reviews 23: 1485-1511

Sylvia D. A. – Galloway W. E. 2006. Morphology and stratigraphy of the late Quaternary lower Brazos valley: Implications for paleo-climate, discharge and sediment delivery. Sedimentary Geology 190: 159-175

Thorndycraft V. R. – Benito G. – Rico M. – Sopena A. – Sánchez-Moya Y. – Casas A. 2005. A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. Journal of Hydrology 313: 16–31

Timár G. – Gábris Gy. 2008. Estimation of water conductivity of natural flood channels on the Tisza floodplain, the Great Hungarian Plan. Geomorphology 98: 250-261

Ward P. J. – Aerts J. C. – Moel H. – Renssen H. 2007. Verification of a coupled climate-hydrological model against Holocene palaeohydrological records. Global and Planetary Change 57: 283-300

Werritty A. – Leys K. F. 2001. The sensitivity of Scottish rivers and upland valley floors to recent environmental change. Catena 42: 251-273

Williams G. P. 1984. Paleohydrological Equations for Rivers. In: Costa J. E. – Fleisher P. J. (eds.) Developments and Applications of Geomorphology. Berlin: Springer Verlag. 343-367