Towards a continuous inland excess water flood monitoring system based on remote sensing data

Main Article Content

Boudewijn van Leeuwen
Zalán Tobak
Ferenc Kovács
György Sipos

Abstract

Inland excess water (IEW) is a type of flood where large flat inland areas are covered with water during a period of several weeks to months. The monitoring of these floods is needed to understand the extent and direction of development of the inundations and to mitigate their damage to the agricultural sector and build up infrastructure. Since IEW affects large areas, remote sensing data and methods are promising technologies to map these floods. This study presents the first results of a system that can monitor inland excess water over a large area with sufficient detail at a high interval and in a timely matter. The methodology is developed in such a way that only freely available satellite imagery is required and a map with known water bodies is needed to train the method to identify inundations. Minimal human interference is needed to generate the IEW maps. We will present a method describing three parallel workflows, each generating separate maps. The maps are combined to one weekly IEW map. At this moment, the method is capable of generating IEW maps for a region of over 8000 km2, but it will be extended to cover the whole Great Hungarian Plain, and in the future, it can be extended to any area where a training water map can be created.

Downloads

Download data is not yet available.

Article Details

How to Cite
van Leeuwen, Boudewijn, Zalán Tobak, Ferenc Kovács, and György Sipos. 2017. “Towards a Continuous Inland Excess Water Flood Monitoring System Based on Remote Sensing Data”. Journal of Environmental Geography 10 (3-4):9-15. https://doi.org/10.1515/jengeo-2017-0008.
Section
Articles

References

Barta, K. 2013. Inland Excess Water Projection Based on Meteorological and Pedological Monitoring Data on a Study Area Located in the Southern Part of the Great Hungarian Plain. Journal of Environmental Geography 6 (3-4), 31–37. DOI: 10.2478/jengeo-2013-000410.2478/jengeo-2013-0004

Barta, K., Szatmári, J., Posta, A. 2016. Connection Between Inland Excess Water Development and Motorways. Carpathian Journal of Earth and Environmental Sciences 11 (1), 293–301.

Benyhe, B., Kiss, T. 2012. Morphometric analysis of agricultural landforms in lowland ploughed fields using high resolution digital elevation models. Carpathian Journal of Earth and Environmental Sciences 7 (3), 71–78.

Bozán, Cs, Körösparti, J., Pásztor, L., Kuti, L., Kozák, P., Pálfai, I. 2009. GIS-based mapping of excess water inundation hazard in Csongrád county (Hungary). In.: Proceedings of the International Symposia on Risk Factors for Environment and Food Safety & Natural Resources and Sustainable Development, Faculty of Environmental Protection, November 6-7 Oradea, 678–684.

Bozán, Cs., Pálfai, I., Pásztor, L., Kozák, P., Körösparti, J. 2005. Mapping of Excess Water Hazard in Békés and Csongrád Counties of Hungary. In.: ICID 21st European Regional Conference Integrated Land and Water Resources Management: Towards Sustainable Rural Development, Frankfurt (an Oder) and Slubice, Germany and Poland, p.4

Büttner, G., Soukup, T., Kosztra, B. 2014. CLC2012 Addendum to CLC2006 Technical Guidelines. EEA, p.35.

Csekő, Á., 2003. Árvíz-és belvízfelmérés radar felvételekkel (Flood and inland excess water survey using radar imagery), Geodézia és Kartográfia 2, 16–22. (in Hungarian).

Csendes, B., Mucsi, L. 2016. Inland excess water mapping using hyperspectral imagery, Geographica Pannonica 20 (4), 191–196. DOI: 10.18421/GP20.04-0110.18421/GP20.04-01

Csornai, G., Lelkes, M., Nádor, G., Wirnhardt, Cs. 2000. Operatív árvíz-és belvíz-monitoring távérzékeléssel (Remote sensing based operative flood and inland excess water monitoring). Geodézia és Kartográfia 52 (5) 6–12. (in Hungarian).

Gál, N., Farsang, A. 2013. Weather extremities and soil processes impact of excess water on soil structure in the Southern Great Hungarian Plain, In: Lóczy D. (ed.) Geomorphological impacts of extreme weather: Case studies from Central and Eastern Europe. Springer, 313–325.

Gálya, B., Riczu, P., Blaskó, L., Tamás J. 2016. Belvíz érzékenység vizsgálata radar adatok alapján (Radar data based inland excess water sensitivity study), In: Az elmélet és a gyakorlat találkozása a térinformatikában VII. = Theory meets practice in GIS. Debrecen: Debreceni Egyetemi Kiadó, 161–168. (in Hungarian).

Jensen, J.R. 1986. Introduction Digital Image Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 379 p.

Kozák, P. 2006. A belvízjárás összefüggéseinek vizsgálata az Alföld délkeleti részén, a vízgazdálkodás európai elvárásainak tükrében (The evaluation of the excess surface waters on the Hungarian lowland’s south-east part, in the expectation of the water management in Europe), Doctoral Thesis, University of Szeged 103 p. (in Hungarian).

Kruse, F., Lefkoff, A.B., Boardman, J., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A. 1993. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment 44. 145–163. DOI: 10.1016/0034-4257(93)90013-n10.1016/0034-4257(93)90013-n

Licskó, B, Vekerdy, Z., Szilágyi, A., Busics, I., 1987. Távérzékelési módszertani útmutató a meliorációs tanulmánytervek készítéséhez (Handbook for remote sensing methodology for the preparation of land improvement plans), Földmérési és Távérzékelési Intézet, Budapest. (in Hungarian).

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, M. 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment 120, 91–101. DOI: 10.1016/j.rse.2011.09.02610.1016/j.rse.2011.09.026

Mucsi, L., Henits, L. 2010. Creating excess water inundation maps by sub-pixel classification of medium resolution satellite images. Journal of Environmental Geography 3 (1–4), 31–40.

Pálfai I., 2003. Magyarország belvíz-veszélyeztetettségi térképe (Hungarian inland excess water map). Vízügyi közlemények 85 (3), 510–524. (in Hungarian).

Pásztor, L., Körösparti, J., Bozán, Cs., Laborczi, A. & Takács, K. 2014. Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. Journal of Maps 11 (4), 636–644. DOI: 10.1080/17445647.2014.95464710.1080/17445647.2014.954647

Rakonczai, J., Farsang, A., Mezősi, G., Gál, N. 2011. A belvízképződés elméleti háttere (Conceptual background to the formation of inland excess water). Földrajzi Közlemények 35 (4), 339–350. (in Hungarian).

Rakonczai, J., Mucsi, L., Szatmári, J., Kovács, F., Csató, Sz. 2001. A belvizes területek elhatárolásának módszertani lehetőségei (Methods for deliniation of inland excess water areas). In.: A földrajz eredményei az új évezred küszöbén. Az I. Magyar Földrajzi Konferencia CD kötete, SZTE TFGT, Szeged. p.14. (in Hungarian).

Swain, P. H., Davis, S.M. 1978. Remote Sensing: The Quantitative Approach, McGraw-Hill.

Szatmári, J., van Leeuwen, B. 2013. Inland Excess Water – Belvíz – Suvišne Unutrašnje Vode, Szeged; Újvidék: Szegedi Tudományegyetem; Újvidéki Egyetem, p.154.

USGS, 2017. LANDSAT 8 surface reflectance code (LaSRC) product. Ver.4.1. User guide, Department of the Interior, p.39.

van Leeuwen, B., Mezősi, G., Tobak, Z., Szatmári, J., Barta, K., 2012. Identification of inland excess water floodings using an artificial neural network. Carpathian Journal of Earth and Environmental Sciences 7 (4), 173–180.

van Leeuwen, B., Právetz, T., Liptay, Z.A., Tobak, Z. 2016. Physically based Hydrological Modelling of Inland Excess Water, Carpathian Journal of Earth and Environmental Sciences 11 (2), 497–510.

Xu, H., 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI), International Journal of Remote Sensing 5, 589-595. DOI: 10.1080/0143116060058917910.1080/01431160600589179