Characteristics of Point-Bar Development under the Influence of a Dam Case Study on the Dráva River at Sigetec, Croatia
Main Article Content
Abstract
Before the extensive engineering works the Dráva River had braided pattern. However in the 19-20th centuries river regulation works became widespread, thus meanders were cut off, side-channels were blocked and hydroelectric power plants were completed. These human impacts significantly changed the hydro-morphology of the river. The aim of the present research is to analyse meander development and the formation of a point-bar from the point of view of indirect human impact. Series of maps and ortho-photos representing the period of 1870-2011 were used to quantify the longterm meander development, rate of bank erosion and point-bar aggradation. Besides, at-a-site erosion measurements and grain-size analysis were also carried out. As the result of reservoir constructions during the last 145 years floods almost totally disappeared, as their return period increased to 5-15 years and their duration decreased to 1-2 days. The channel pattern had changed from braided to sinuous and to meandering, thus the rate of bank erosion increased from 3.7 m/y to 32 m/y. On the upstream part of the point-bar the maximum grain size is 49.7-83.4 mm and the mean particle size is 7.6 mm, whilst on the downstream part the maximum grain size was only 39.7-39.9 mm and mean sediment size decreased to 6.1 mm. Due to the coarse sediment supply and the decreasing stream energy the point-bars develop quickly upstream and laterally too.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
x
Funding data
-
Hungarian Scientific Research Fund
Grant numbers 100761
References
Ashmore, P. E. 1991. How do gravel-bed rivers braid? Canadian Journal of Earth Sciences, 28(3), 326-341. DOI: 10.1139/e91-030
Balogh, K. 1991. Szedimentológia (Sedimentology). Budapest, Akadémiai Kiadó, 547 p. (in Hungarian) Belal, S. A. 2015. Grain size analysis of the Lower Cambrian- Lower Cretaceous clastic sequence of Jordan: Sedimentological and paleo-hydrodynamical implications. Journal of Asian Earth Sciences 97/A, 67-88. DOI: 10.1016/j.jseaes.2014.09.029
Blanka, V. 2009. Hidrológiai paraméterek megváltozására bekövetkező morfológiai átalakulás a Hernádon. (Morphological alteration of the Hernád River caused by hydrological alterations) In: Kiss, T. (ed.) Természetföldrajzi folyamatok és formák. SZTE-TTIK, TFGT, 12-26. (in Hungarian)
Blanka, V., Kiss, T. 2011. Effect of different water stages on bank erosion, case study on River Hernád, Hungary. Carpathian Journal of Earth and Environmental Sciences 6 (2), 101-108.
Bonacci, O., Oskoruš, D. 2008. The influence of three Croatian hydroelectric power plants operation on the river Drava hydrological and sediment regime. XXIVth Conference of the Danubian countries on the hydrological forecasting and hydrological bases of water management, 11 p.
Brandt, S. A. 2000. Classification of geomorphological effects downstream of dams. Catena 40, 375-401. DOI:10.1016/S0341-8162(00)00093-X
Butler, J. B., Lane, S. N., Chandler, J. H. 2001. Automated extraction of grain-size data from gravel surfaces using digital image processing. Journal of Hydraulic Research 39, 519-529. DOI: 10.1080/00221686.2001.9628276
Carbonneau, P. E., Lane, S. N., Bergeron, N. E. 2004. Catchment - scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resources Research 40, W07202, DOI: 10.1029/2003WR002759
Chang, F.J., Chung, C.H. 2012. Estimation of riverbed grain-size distribution using image-processing techniques. Journal of Hydrology 440-441, 102-112. DOI: 10.1016/j.jhydrol.2012.03.032
Dietrich, W. E., Whiting, P. 1989. Boundary shear stress and sediment transport in river meanders of sand and gravel. In: Ikeda, S., Parker G. River meandering: American Geophysical Union Water Resources Monograph 12, 1-50.
Dykaar, B. B., Wigington, P. J. 2000. Floodplain formation and cottonwood colonization patterns of the Willamette River, Oregon, USA. Environmental Management 25, 87-104. DOI: 10.1007/s002679910007
Fergus, T. 1997. Geomorphological response of a river regulated for hydropower: River Fortun, Norway. Regulated Rivers: Research and Management 13, 449-461.
Ferguson, R. I., Werritty, A. 1983. Bar Development and Channel Changes in the Gravelly River Feshie, Scotland. In: Collinson, J. D., Lewin, J. (ed.) Modern and Ancient Fluvial Systems. Blackwell Publishing Ltd., Oxford, UK. DOI: 10.1002/9781444303773.ch14
Graham, D. J., Reid, I., Rice, S. P. 2005. Automated sizing of coarse grained sediments: Image-processing procedures. Mathematical Geology 37, 1-28. DOI: 10.1007/s11004-005-8745-x
Gregory, K. J., Park, C. 1974. Adjustment of river channel capacity downstream from a reservoir. Water Resources Research 10(4), 870-873. DOI: 10.1029/WR010i004p00870
Kiss, T., Andrási, G. 2011. A horvátországi duzzasztógátak hatása a Dráva vízjárására és a fenékhordalék szemcseösszetételének alakulása (Essays of the Croatian water power plants on the hydrology and bed-load size of the River Dráva) Hidrológiai Közlöny 91(5), 17-29. (in Hungarian) Kiss, T., Andrási, G. 2014. Morphological classification and changes of islands on the Dráva River, Hungary-Croatia. Carpathian Journal of Earth and Environmental Sciences 9(3), 33-46.
Kiss, T., Andrási, G. 2012. Szigetek változásai a Dráva Mura és Duna közötti szakaszán (Island development on a 200-km long section of the Dráva River). Hidrológiai Közlöny 93(1), 35-40. (in Hungarian) Kiss, T., Andrási, G., Hernesz, P. 2011. Morphological alternation of the Dráva as the result of human impact. AGD Landscape & Environment 5(2), 58-75.
Knighton, A. D. 1998. Fluvial Forms and Processes: a new perspective. London: Arnold, 383 p.
Lajoie, F., Assani, A. A., Roy, A. G., Mesfioui, M. 2007. Impacts of dams on monthly flow characteristics: the influence of watershed size and seasons. Journal of Hydrology 334, 423-439. DOI:10.1016/j.jhydrol.2006.10.019
Leopold, L. B., Wolman, M. G. 1957. River channel patterns: braided, meandering, and straight. United States Geological Survey Professional Paper 282, 47 p.10.3133/pp282B
Magilligan, F. J., Haynie, H. J., Nislow, K. H. 2008. Channel adjustments to dams in the Connecticut River basin. Annals of the AAG 98(2), 267-284. DOI: 10.1080/00045600801944160
Merritt, D. M., Cooper, D. J. 2000. Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regulated Rivers: Research and Management 16, 543-564. DOI: 10.1002/1099-1646(200011/12)16:6<543::AID-RRR590>3.0.CO;2-N Peter, R. W., Brian, W. M. 1997. Partial Transport of a sand/gravel sediment. Water Resources Research 33(1), 235-245. DOI: 10.1029/96WR02672
Petts, G. E., Gurnell, A. M. 2005. Dams and geomorphology: Research progress and future directions. Geomorphology 71, 27-47. DOI:10.1016/j.geomorph.2004.02.015
Remenyik, B. 2005. Adatok a Dráva-szabályozás történetéből. (History of the regulation of the Dráva River) Hidrológiai Közlöny 85(3), 27-32. (in Hungarian) Remenyik, B. 2011. A Dráva szabályozása és a folyó menti területek turizmus- és területfejlesztése. (Regulation and regional development of the Dráva River) Szent István Egyetemi Kiadó, Gödöllő, 200 p. (in Hungarian)
Ristić, R., Ljujić, M., Despotović, J., Aleksić, V., Radić, B., Nikić, Z., Milćanović V., Malušević I., Radonjić, J. 2013. Reservoir sedimentation and hydrological effects of land use changes-case study of the experimental Dićina river watershed. Carpathian Journal of Earth and Environmental Sciences 8(1), 91-98.
Shields, F. D, Lizotte, R., Knight, S. S., Cooper, C. M., Wilcox, D. 2010. The stream channel incision syndrome and water quality. Ecological Engineering, 36(1), 78-90. DOI: 10.1016/j.ecoleng.2009.09.014
Sipos, Gy. 2006. A mederdinamika vizsgálata a Maros magyarországi szakaszán. (Channel dynamism of the Maros River) Theses of PhD dissertation. (in Hungarian) Sipos, Gy., Kiss, T. 2004. Island development and morphological stability on the lowland reach of River Maros, Hungary. Geomorphologia Slovaca 4(1), 52-62.
Williams, G. P., Wolman, M.G. 1984. Downstream effects of dams on alluvial rivers. United States Geological Survey Professional Paper 1286, 1-83.
Woodward, J. C., Macklin, M. G., Krom, M. D., Williams, M. A. J. 2007. The Nile: Evolution, Quaternary River Environments and Material Fluxes. In: Gupta, A. (ed.) Large rivers. Wiley, Chichester, 261-292.
Xu, J. 1996. Underlying gravel layers in a large sand bed river and their influence on downstream-dam channel adjustment. Geomorphology 17, 351-359. DOI:10.1016/0169-555X(96)00012-8
Xu, J. 1997. Evolution of mid-channel bar sin a braided river and complex response to reservoir construction. An example from the Middle Hanjian River, China. Earth Surf. Processes Landf. 22, 953-965. DOI: 10.1002/(SICI)1096-9837(199710)22:10<953::AID-ESP789>3.0.CO;2-S