Modelling the Hydrological Effects of a Levee Failure on the Lower Tisza River

Main Article Content

Tímea Kiss

Abstract

Along the Lower Tisza River (Hungary) the water level of the floods reached new record stages in 1998 and 2006, resulting in 80 cm increase in the peak flood level since the “great flood of 1970”. Due to the gradual weakening of the levee-system caused by the several long-lasting floods, the question has arisen, that as in case of a levee breach or failure how would it modify the hydrological parameters of the river. The aim of the research is to create a hydrological model to analyse the effects (as stage reduction, slope and stream power) of two different levee breaches: one happening before the peak of the flood and another at the time of the flood level. The simulated levee breaching happened on the Tisza River at Mindszent, and the data-set of the 2006 flood was used for the model-ling (at that time no levee failure happened in Hungary, and it was the greatest flood in history). In the simulation the levee was broken at a point, where the channel is very close and intensively eroding, thus there is a real risk of a levee failure. If the levee would be broken a well defined area (reservoir) would be flooded, surrounded by the secondary levees and the rim of the high floodplain. During the simulation the HEC-RAS 4.1. ArcGIS 10.1 and HEC-GeoRAS software were applied. The greatest changes in the hydrology of Tisza occurred in the cross section where the levee breached, though the effects propagated upstream and downstream too. Due to the water outflow from the Tisza the greatest stage reduction effect was 1.54±0.1 m. The slope conditions changed too, as it increased from 4 cm/km to 6.5 cm/km in the upstream reach, while downstream of the failure point it decreased from 3.5 cm/km to 1.9 cm/km. At the same time the stream power increased from 4 W/m to 5.5 W/m in the up-stream section, while it decreased from 3.5 W/m to 1.5 W/m in the downstream reach. Comparing the results of the simulations at different stages (one at the highest stage and one at 1.0 m lower stage) it seems that the hydrological parameters did not change considerably (1%), though in a case of a levee failure at higher the reservoir reached the maximal water level sooner, though less water was stored in it, as the fall of the river was continuous.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kiss, Tímea. 2015. “Modelling the Hydrological Effects of a Levee Failure on the Lower Tisza River”. Journal of Environmental Geography 8 (1-2):31-38. https://doi.org/10.1515/jengeo-2015-0004.
Section
Articles

Funding data

References

Bezdán, M. 2011. A szabályozott Tisza vízjárása tulajdonságai a Tiszafüred alatti folyószakaszokon. (Hydrology of the Tisza downstream of Tiszafüred) PhD dissertation, SZTE TFGT, Szeged, 120 p. (in Hungarian)

Bódis, K. 2010. Digitális Domborzatmodellek és alkalmazási lehetőségek az árvízi kockázatelemzésben. (DTMs and their application in flood risk management) JATEPress, Szeged, 172 p. (in Hungarian)

Borza, T. 2008. A Sövényházi ártéri öblözet lokalizációs tervének felújítása 2D árvízi elöntés modellezés segítségével. (2Dmodelling of the Sövényháza Reservoir) Diplomaterv, BME Vízépítései és Vízgazdálkodási Tanszék, 67 p. (in Hungarian)

Dégen, I. 1969. Vízgazdálkodás I. (Water management) Tankönykiadó Vállalat, Budapest. 220. (in Hungarian)

Haghizadeh, A., Shui, L., Mirzaei, M., Memarian, H. 2012. Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin. Journal of Water Resource and Protection 4, 25-31. DOI: 10.4236/jwarp.2012.41004

Hernesz, P., Kiss, T. 2013. A Tisza meder partfalának vizsgálata. (Stratigraphy of the Tisza banks) Hidrológia Közlöny 93(2), 13-19. (in Hungarian) Józsa, J. 2001. Felszíni vizek áramlási és transzport folyamatainak numerikus modellezése. (Numeric modelling of flows) Hidrológia Közlöny 81(4), 264-266. (in Hungarian) Kamanbedast, A., Esfandiar, Y. 2011. Investigation and Study of Morphological Changing of Rivers with Using HEC-Geo-RAS and Mike 11 Software. World Applied Sciences Journal 13(5), 1253-1258.

Karatzas, P., Kourgialas, N. 2012. A hydro-economic modelling framework for flood damage estimation and the role of riparian vegetation. Hydrological Processes 27, 515-531. DOI: 10.1002/hyp.9256

Kiss, T., Hernesz, P., Sipos, Gy., 2012. Meander cores on the floodplain - the early Holocene development of the lowfloodplain along the Lower Tisza Region, Hungary. Journal of Environmental Geography 5, 1-10.

Kiss, T., Fiala, K., Sipos Gy. 2008. Altered meander parameters due to river regulation works, Lower Tisza, Hungary. Geomorphology 98(1-2), 96-110. DOI:10.1016/j.geomorph.2007.02.027

Knighton, D. 1998. Fluvial Forms and Processes. Routledge, New York, 383p.

Konecsny, K. 2000. Az országhatáron túli tájátalakítás hatása az Alföld vízviszonyaira. (Human impact on rivers) In: Pálfai, I. (ed.): A víz szerepe és jelentősége az Alföldön. Békéscsaba, 27-45. (in Hungarian)

Kovács, S. 2007. Kisköre és a déli országhatár közötti Tisza szakasz lefolyásviszonyainak jellemzése. (Modelling of the flow conditions between Kisköre and the southern border of Hungary) ATIKÖVIZIG and KÖTIKÖVIZIG, Manuscript, 1-43. (in Hungarian)

Lászlóffy, W. 1982. A Tisza. Akadémia Kiadó, Budapest, 610 p. (in Hungarian)

Pregun, Cs. 2009. Felszíni vízfolyások digitális hidrológiai modellezésének alkalmazása a vízminősítésben. (Digital hydrological modelling of surface waters) Hidrológia Közlöny 89(1), 9-21. (in Hungarian)

Rakonczai, J., Kozák, P. 2009. Az Alsó-Tisza-vidék és a Tisza. (The Lower Tisza region and the Tisza) Földrajzi Közlemények 133(4), 385-395. (in Hungarian)

Sándor, A. 2011. A hullámtér-feltöltődés folyamatának vizsgálata a Tisza középső és alsó szakaszán. (Floodplain aggradation along the Lower and Middle Tisza) PhD dissertation, SZTE TFGT, 120. (in Hungarian)

Schweitzer, F. 2003. Folyóink hullámtereinek fejlődése, kapcsolatuk az árvizekkel és az árvízvédelmi töltésekkel (Floodplain development and floods) in: Teplán I. (ed): A Tisza és vízrendszere. MTA TTK, Budapest, 107-117. (in Hungarian)

Starosolszky, Ö. 1996. Gondolatok a hidraulikai modellezésről. (Introduction to hydraulic modelling) Vízügyi Közlemények 78(2), 166-171. (in Hungarian)

Szigyártó Z., Rátky I. 2010. Eljárás a Vásárhelyi terv továbbfejlesztése során előirányzott árvízi tározórendszer hidrológiai méretezéséhez. (Handbook for planning flood-storage reservoirs) Hidrológiai Közlöny 90(2), 25-35. (in Hungarian)

Szigyártó, Z. 2012. A Kiskörei-tározó hatása az árhullámok ellapulásra. (The effect of the Kisköre Storage Lake on floods) Hidrológiai Közlöny 92(2), 25-31. (in Hungarian)

U. S. Army Crop of Enginners. 2010. Users’s Manual of HEC-RAS River Analysis system 4.1.

Vágás, I. 2003. Az 1998. novemberi árhullám hidrológiai értékelése a Tisza-völgyi árvizek sorában. (Hydrology of the 1998 flood) In: Szlávik, L. (ed.): Az 1998. évi árvíz. Vízügyi Közlemények különszám 1, 85-91. (in Hungarian)

Whisler, F.D. Watson K. K. 1968. One-dimensional gravity drainage of uniform columns of porous materials. Journal of Hydrology 6, 277-296. DOI:10.1016/0022-1694(68)90104-2

Yalcin. G., Akyurek, Z. 2004. Analysing Flood Vulnerable Areas with Multicriteria Evaluation. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 35(2), 359-364.

Yu, M. 2013. Investigation of non-cohesive levee breach by overtopping flow. Journal of Hydrodynamics 25(4), 572-579. DOI:10.1016/S1001-6058(11)60398-4