Constraining the Age of Floodplain Levels Along the Lower Section of River Tisza, Hungary
Main Article Content
Abstract
During the Late Pelistocene-Holocene transition the fluvial landscape of the Great Hungarian Plain changed considerably as a consequence of tectonic, climatic and geomorphological factors. Geochronology, and especially luminescence dating, is a very important tool in reconstructing these changes. The present study focuses on the Lower-Tisza region and addresses the timing of the development of different floodplain levels. In the meantime the luminescence characteristics of the investigated alluvial sediments were also assessed, with a special emphasis on the comparison of silty fine grain and sandy coarse grain results, as in the given medium and low energy environment fine grain sediments are more abundant, however, based on the literature, coarse grain samples are more reliable in terms of luminescence dating. Measurements were performed on 12 samples originating from the point bars of two large palaeo-meanders, representing different floodplain levels along the river. Results indicate the applicability of both grain size fractions for dating purposes, though fine grain subsamples overestimate in average by 1.5 ka the ages yielded by coarse grain subsamples. Consequently, fine grain samples can be used for outlining only general trends, and results need to be controlled by coarse grain measurements where possible. Based on the ages received, the upper floodplain was actively formed until 13-15 ka, when incision and the development of an intermediate floodplain level started. The meander on the intermediate flood plain level developed then very actively until 9 ka. As indicated by the received age information the intensity of meander formation could be highly affected by climatic and especially vegetation control. However, reconstruction can be refined later by further sampling and the application of the results of the present paper.
Downloads
Article Details
x
References
Adamiec, G., Aitken, M. 1998. Dose-rate conversion factors: update. Ancient TL 16 (2), 37-50.
Aitken, M. J. 1998. An Introduction to Optical Dating. Oxford University Press. London.
Alexanderson, H. 2007. Residual OSL signals from modern Greenlandic river sediments. Geochronometria 26, 1-9. DOI: 10.2478/v10003-007-0001-610.2478/v10003-007-0001-6
Borsy, Z. 1989. Az Alföld hordalékkúpjának negyedidőszaki fejlődéstörténete (The Quaternary development of the Great Hungarain Plain). Földrajzi Értesítő 38, 211-224. (in Hungarian)
Bøtter-Jensen, L., McKeever, S. W. S., Wintle, A. G. 2003. Optically Stimulated Luminescence Dosimetry. Elsevier.10.1016/B978-044450684-9/50091-X
Somogyi, S. 1967. Ősföldrajzi és morfológiai kérdések az Alföldről (Palaeo-geographical and geomorphological questions on the Great Hungarian Plain). Földrajzi Értesítő 16, 319-337. (in Hungarian)
Sümeghy, B., Kiss, T., Sipos, Gy., Tóth, O. 2013. A Maros hordalékkúp felső-pleisztocén-holocén fluviális képződményei. (Fluvial forms on the Maros alluvial fan from the Upper Pleistocene- Holozene) Földtani Közlöny 143 (3), 265-278. (in Hungarian)
Gábris, Gy. 1986. Alföldi folyóink holocén vízhozamai (Holocene discharge of rivers on the Great Hungarian Plain). Alföldi Tanulmányok 10, 35-48. (in Hungarian)
Gábris, Gy., Nádor, A. 2007. Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews 26, 2758-2782. DOI: 10.1016/j.quascirev.2007.06.03010.1016/j.quascirev.2007.06.030
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., Olley, J. M. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part I: Experimental design and statistical models. Archeometry 41, 339-364. DOI: 10.1111/j.1475-4754.1999.tb00987.x 10.1111/j.1475-4754.1999.tb00987.x
Hernesz, P. 2015. Késő-pleisztocén és holocén ártérfejlődés az Alsó- Tisza mentén. (Late Pleistocene and Holocene floodplain development along the Lower Tisza River). PhD dissertation, 118 p. (in Hungarian)
Hu, G., Zhang, J.F., Qui, W.L., Zhou, L.P. 2010. Residual OSL signals in modern fluvial sediments from Yellow River (HuabgHe) and the implications for dating young sediments. Quaternary Geochronology 5, 187-193. DOI: 10.1016/j.quageo.2009.05.00310.1016/j.quageo.2009.05.003
Kiss, T., Hernesz, P. 2011. Az Alsó-Tisza-vidék árterének geomorfológiai jellegzetességei és kora. (Geomorphological features of the Lower Tisza floodplain and thir dating) Földrajzi Közlemények, 135 (3), 261-275. (in Hungarian)
Kiss, T., Hernesz, P., Sipos, Gy. 2012. Meander cores on the floodplain - an early Holocene development of the low floodplain along the lower Tisza region, Hungary. Journal of Environmental Geography 5, 1-10.
Kiss, T., Sümeghy, B., Hernesz, P., Sipos, Gy., Mezősi, G. 2013. Az Alsó-Tisza menti ártér és a Maros hordalékkúp késő-pleisztocén és holocén fejlődéstörténete. (Late Pleistocene and Holocene development of the Lower Tisza floodplain and the alluvial fan of the River Maros) Földrajzi Közlemények 137 (3), 269-278. (in Hungarian)
Kiss, T., Hernesz, P., Sümeghy, B., Györgyövics, K., Sipos, Gy. 2015. The evolution of the Great Hungarian Plain fluvial system, Fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International 388, 142-155. DOI: 10.1016/j.quaint.2014.05.05010.1016/j.quaint.2014.05.050
Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., Zöller, L. 2002. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20, 53-61.
Nádor, A., Thamó-Bozsó, E., Magyari, Á., Babinszki, E. 2007. Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sedimentary Geology 202, 174-192. DOI: 10.1016/j.sedgeo.2007.03.00110.1016/j.sedgeo.2007.03.001
Prescott, J. R., Hutton, J. T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and longterm time variations. Radiation Measurements 23, 497-500. DOI: 10.1016/1350-4487(94)90086-810.1016/1350-4487(94)90086-8
Rittenour, T. M. 2008. Luminescence dating of fluvial deposits: applications to geomorphic palaeosemic and archeological research. Boreas 37, 613-635. DOI: 10.1111/j.1502-3885.2008.00056.x 10.1111/j.1502-3885.2008.00056.x
Roberts, H., Wintle, A. G. 2001. Equvalent dose determination for polymineralic fine-grains using the SAR protocol: application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews 20, 859-863. DOI: 10.1016/s0277-3791(00)00051-210.1016/S0277-3791(00)00051-2
Vandenberghe, D., Derese, C., Houbrechts, G. 2007. Residual doses in recent alluvial sediments from Ardenne (S Belgium). Geochronometria 28, 1-8. DOI: 10.2478/v10003-007-0024-z Vandenberghe, D. 2004. Investigation of the Optically Stimulated Luminescence dating method for application to young geological sediments. PhD dissertation, Universitiet Gent 10.2478/v10003-007-0024-z
Wintle, A. G., Murray, A. S. 2006. A review of quartz optically stimulated luminescence characteristic and their relevance in singlealiquot regeneration dating protocols. Radiation Measurement 41, 369-391. DOI: 10.1016/j.radmeas.2005.11.00110.1016/j.radmeas.2005.11.001