Tree-Ring Width And Its Interrelation With Environmental Parameters Case Study In Central Hungary

Main Article Content

Zsuzsanna Ladányi
Viktória Blanka

Abstract

Tree ring width is influenced by several internal and external factors, among which climate became one of the most dominant due to the altering conditions and patterns of precipitation and temperature. The study aims to analyse the interrelationship between tree ring-width and the dominant environmental parameters in a landscape exposed to water scarcity in the past decades due to climate change and human interventions. Scots pine (Pinus sylvestris), black locust (Robinia pseudoacacia) and white poplar (Populus alba) plantations were sampled to reveal their exposure to climatic forcing and water scarcity (different water availability). Correlation and similarity analysis were carried out to compare the calculated ring-width indices to climatic parameters and aridity indices. Tree ring sensitivity was assessed to reveal the impact of water scarcity on yearly ring-growth. Spatial overlapping of significance levels and mean sensitivity with the hydrological changes of the past decades were evaluated to reveal presumable spatial differences of the investigated samples. In the study area (South Danube-Tisza Interfluve) droughts and the deep groundwater table had both impacts on tree growth. The spectacular decrease of ring-width corresponds to the drought years determined by the investigated aridity indices. The relationship between the climate parameters and the ring-widths varies spatially with the changing site conditions. The highest level of correlation coefficients was experienced in areas with the lowest level of water availability. Ring-width sensitivity assessments showed an increasing tendency of sensitivity when comparing the consecutive decades, except for samples with favorable water availability.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ladányi, Zsuzsanna, and Viktória Blanka. 2015. “Tree-Ring Width And Its Interrelation With Environmental Parameters: Case Study In Central Hungary”. Journal of Environmental Geography 8 (3-4):53-59. https://doi.org/10.1515/jengeo-2015-0012.
Section
Articles

Funding data

References

Alestalo, J. 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105, 1–140.

Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzales, P., Fensham, R., Zhang, Z., Lim, J.-H., Castro, J., Demidova, N., Allard, G., Running, S.W., Semerci, A., Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660–684. DOI: 10.1016/j.foreco.2009.09.001

Bartholy, J., Pongrácz, l R. 2007. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global and Planetary Change 57 (1–2), 83–95. DOI: 10.1016/j.gloplacha.2006.11.002

Bartholy, J., Pongrácz, R., Pieczka, I., Torma, Cs. 2011. Dynamical Downscaling of Projected 21st Century Climate for the Carpathian Basin. Blanco J. (Ed.) Climate Change - Research and Technology for Adaptation and Mitigation. ISBN: 978-953-307-621-8, DOI: 10.5772/24707

Biró, M., Révész, A., Molnár, Zs., Horváth, F. 2007. Regional habitat pattern of the Danube–Tisza Interfluve in Hungary, I: The landscape structure and habitat pattern; the fen and alkali vegetation. Acta Botanica Hungarica 49 (3–4), 267–303. DOI: 10.1556/ABot.49.2007.3-4.4

Blanka, V., Mezősi, G., Meyer, B. 2013. Changes in the drought hazard in Hungary due to climate change. Időjárás Quarterly Journal of the Hungarian Meteorological Service 117, 2, 219–237.

Borsy, Z. 1989. Az Alföld hordalékkúpjainak fejlődéstörténete. Földrajzi Értesítő 38 (3–4), 211–224.

Deák, J.Á. 2010. Habitat-pattern and landscape ecological evaluation of the microregions of Csongrád county. Doctoral Theses, University of Szeged.

Führer, E., Horváth, L., Jagodics, A., Machon, A., Szabados, I. 2011. Application of a new aridity index in Hungarian forestry practice. Időjárás Quarterly Journal of the Hungarian Meteorological Service 115 (3), 205–216.

Fritts, H. C. 1976. Tree Rings and Climate. The Blackburn Press, 567 p. (ISBN: 1-930665-39-3) 10.1016/B978-0-12-268450-0.50006-9

Garamszegi, B., Kern, Z. 2014. Climate influence on radial growth of Fagus sylvatica growing near the edge of its distribution in Bükk Mts, Hungary. Dendrobiology 72, 93–102. DOI: 10.12657/denbio.072.008

Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Churkina, G., Pajtík, J., Sedmák, R., Turčáni, M. 2011. Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research 47, 219–236. DOI: 10.3354/cr01024

Horváth, E. 2003. Dendrokronológiai vizsgálatok Magyarországi fafajokon. Vízügyi Közlemények 85 (2) 294–332.

Jolly, W., Dobbertin, M., Zimmermann, N. Reichstein, M. 2005. Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophysical Research Letters 32, L18409. DOI: 10.1029/2005gl023252

Kern, Z., Patkó, M., Kázmér, M., Fekete, J., Kele, S., Pályi, Z. 2013. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus roburL.), Hungary. Quaternary International 239, 257–267. DOI: 10.1016/j.quaint.2012.05.037

Kovács, F. 2006. Tájváltozások értékelése geoinformatikai módszerekkel a Duna–Tisza közén különös tekintettel a szárazodás problémájára. Doktori értekezés. 105 p.

Kovács, F. 2007. Assessment of Regional Variations in Biomass Production Using Satellite Image Analysis between 1992 and 2004. Transactions in GIS 11(6), 911–926. DOI: 10.1111/j.1467-9671.2007.01080.x

Kuti, L., Tóth, T., Kerék, B., Zöld, A., Szentpétery, I. 2002. Fluctuation of the groundwater level, and its consequences in the soil–parent rock–groundwater system of a sodic grassland. Agrokémia és Talajtan 51 (1–2), 253–262.

Ladányi, Zs., Deák, J.Á., Rakonczai, J. 2010. The effect of aridification on dry and wet habitats of Illancs microregion, SW Great Hungarian Plain, Hungary. AGD Landscape & Environment 4 (1), 11–22.

Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. DOI: 10.1126/science.1156831

Lindner, M., Fitzgerald, J.B., Zimmermann, N.E., Reyer, C., Delzon, S., van der Maaten, E., , Schelhaas, M-J, Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., Hanewinkel, M. 2014. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146, 69–83. DOI:10.1016/j.jenvman.2014.07.030

Mátyás, Cs. 2010. Forecasts needed for retreating forests. Nature 464 (7293), 1271. DOI: 10.1038/4641271a

Mezősi, G., Bata, T., Meyer, B.C., Blanka, V. Ladányi, Zs. 2014. Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin. Int J Disaster Risk Sci 5(2), 136–146. DOI: 10.1007/s13753-014-0016-3

OMSZ, 2014. Hungarian Meteorological Service, Online at: http://www.met.hu/en/eghajlat/magyarorszag_eghajlata

Pálfai, I. 1990. Description and forecasting of droughts in Hungary. Transactions of 14th Congress on Irrigation and Drainage. Rio de Janeiro ICID, 1-C, 151-158.

Pálfai, I. 1994. Összefoglaló tanulmány a Duna-Tisza közi talajvízszint-süllyedés okairól és a vízhiányos helyzet javításának lehetőségeiről. In: Pálfai, I. (ed.): A Nagyalföld Alapítvány kötetei 3. A Duna-Tisza közi hátság vízgazdálkodási problémái. 111–126.

Pálfai, I. 1995. A Duna-Tisza közi hátság vízgazdálkodási problémái és megoldásuk lehetséges útjai. Vízügyi Közlemények 77 (2), 144–165.

Pálfai, I. 2000b. Az Alföld belvízi veszélyeztetettsége és aszályérzékenysége. In: Pálfai, I. (ed.): A Nagyalföld Alapítvány kötetei 6. A víz szerepe és jelentősége az Alföldön. 85–96.

Pálfai, I., Herceg, Á. 2011. Droughtness of Hungary and Balkan Peninsula. Riscuri si Catastrofe An X 9/2 145–154.

Rakonczai, J. 2011. Effects and Consequences of Global Climate Change in the Carpathian Basin, Climate Change - Geophysical Foundations and Ecological Effects, Juan Blanco and Houshang Kheradmand (Ed.), ISBN: 978-953-307-419-1, InTech, Available at: http://www.intechopen.com/articles/show/title/effects-and-consequences-of-global-climate-change-in-the-carpathian-basin 10.5772/24679

Rakonczai, J. 2014. Consequences of climate change in landscapes of the Southern Great Hungarian Plain. Academic Theses.

Schweingruber, F.H. 1988. Tree Rings. Basics and Applications of Dendrochronology. Kluwer Academic Publisher, Dodrecht. 276 p.10.1007/978-94-009-1273-1_5

Szabados, I. 2008. A csapadék hatása a cser évgyűrűméretére. Erdészeti kutatások 92, 121–128.

Szabados, I., Führer, E., Kolozs, L. 2012. Az akác növekedésviszonyai az Alföldön, évgyűrűelemzés alapján. In: Csiha, E. (ed) Alföldi Erdőkért Egyesület Kutatói Nap. Tudományos eredmények a gyakorlatban. Alföldi Erdőkért Egyesület, 14–18.

Szanyi, J. Kovács, B. 2009. Egyesített 3D hidrodinamikai modell a felszín alatti vizek használatának fenntartható fejlesztéséhez a magyar-szerb országhatár menti régióban. INTERREG III/A HUSER0602/131.

Venäläinen, A., Korhonen, N., Hyvärinen, O., Koutsias, N., Xystrakis, F., Urbieta, I.R., Moreno, J.M. 2014. Temporal variations and change in forest fire dangerin Europe for 1960–2012. Nat. Hazards Earth Syst. Sci. 14, 1477–1490. DOI: 10.5194/nhess-14-1477-2014

Völgyesi, I. 2006. A Homokhátság felszín alatti vízháztartása – vízpótlási és vízvisszatartási lehetőségek. MHT XXIV. Országos Vándorgyűlés Kiadványa. Pécs, 2006. Online at: http://vol-gyesi.uw.hu/dokuk/homokhatsag.pdf

Way, D.A., Oren, R., 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30, 669–688.DOI: 10.1093/treephys/tpq015