Comparative evaluation of the material of the artificial levees A case study along the Tisza and Maros Rivers, Hungary

Main Article Content

Diaa Sheishah
György Sipos
Károly Barta
Enas Abdelsamei
Alexandru Hegyi
Alexandru Onaca
Abbas M. Abbas

Abstract

Artificial levees have major importance in protecting human lives and infrastructure as they are essential elements of the flood protection measures. Nevertheless, the lack of the necessary information about their structure and internal composition might cause high risks. To monitor their stability, integrated surveys are needed, including geophysical and geotechnical methods. Levees along the rivers in Hungary were constructed more than 150 years ago, and they were heightened several times; therefore, investigations are required to assure their performance in flood risk mitigation. Our investigation aimed to utilise non-invasive geophysical techniques, primarily electrical resistivity imaging, with the validation of geotechnical investigations to map and compare the compositional and structural variations of two very different levee sections along River Tisza and River Maros. Integrating the analysed drilling data with ERT profiles showed that the main composition of the investigated Tisza levee section is fine and medium silt with an average resistivity 30 Ωm, however, the investigated section of Maros levee was built of not only of fine and medium silt but also of medium and coarse sand exhibiting higher resistivity values reaching up to 2200 Ωm. Several physical parameters were measured to study the nature of constituting levee materials like moisture content, grain-size, porosity, bulk-density, saturated hydraulic conductivity, and resistivity. It was found that most of them show a connection with resistivity, but the hydraulic conductivity did not show a direct connection, however the latter could exhibit the aquitard nature of Tisza levee materials and the non-aquitard nature of Maros levee materials.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sheishah, Diaa, György Sipos, Károly Barta, Enas Abdelsamei, Alexandru Hegyi, Alexandru Onaca, and Abbas M. Abbas. 2023. “Comparative Evaluation of the Material of the Artificial Levees: A Case Study Along the Tisza and Maros Rivers, Hungary”. Journal of Environmental Geography 16 (1-4):1-10. https://doi.org/10.14232/jengeo-2023-44452.
Section
Articles

References

Chlaib, H.K., Mahdi, H., Al-Shukri, H., Su, M.M., Catakli, A., Abd, N. 2014. Using ground penetrating radar in levee assessment to detect small-scale animal burrows. J. Appl. Geophys., 103, 121–131. DOI: 10.1016/j.jappgeo.2014.01.011

Cho, I.K., Yeom, J.Y. 2007. Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics, 72(2), G31–G38. doi: 10.1190/1.2435200

Constable, S.C., Parker, R.L. and Constable, C.G. 1987. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic data. Geophysics, 52, 289–300. DOI: 10.1190/1.1442303

Crawford, M.M., Bryson, L.S. 2018. Assessment of active landslides using field electrical measurements. Eng. Geol., 233, 146–159. DOI: 10.1016/j.enggeo.2017.11.012

Dane, J.H., Hopmans, J.W. 2002. Water retention and storage. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis, Part 4, SSSA Book Ser. 5. SSSA, Madison, Wisconsin, 671–675.

Datsios, Z. G., Mikropoulos, P. N., Karakousis, I. 2017. Laboratory characterisation and modelling of DC electrical resistivity of sandy soil with variable water resistivity and content. IEEE Transactions on Dielectrics and Electrical Insulation, 24(5), 3063–3072. DOI: 10.1109/TDEI.2017.006583

Di Prinzio, M., Bittelli, M., Castellarin, A., Pisa, P.R. 2010. Application of GPR to the moni- toring of river embankments. J. Appl. Geophys., 71(2), 53–61. DOI: 10.1016/j.japgeo.2010.04.002

De Groot-Hedlin, C., Constable, S. 1990. Occam's inversion to generate smooth, two- dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624. DOI: 10.1190/1.1649377

Desai C.S. 1970. Seepage in Mississippi River Banks, Analysis of Transient Seepage Using a Viscous-Flow Model and Numerical Methods, Miscellanous Paper S-70-3, Report 1. USACE Waterways Experiment Station, Vicksburg, MS.

Farzamian M., Fernando A. Monteiro Santos, Mohamed A. K. 2015. Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of Applied Geophysics, 112. 175–189. DOI: 10.1016/j.jappgeo.2014.11.016

Fetter, C. W. 2001. Properties of aquifers. Applied hydrogeology, 625p. University of Wisconsin, Oshkosh. Online available at: https://arjzaidi.files.wordpress.com/2015/09/unimasr-com_e7ce669a880a8c4c70b4214641f93a02.pdf

Galli, L. 1976. Az árvízvédelmi földművek állékonyságának vizsgálata. Budapest: Országos Vízügyi Hivatal, Online available at: https://library.hungaricana.hu/hu/view/VizugyiKonyvek_078/?pg=57&layout=s

García-Tomillo, A., de Figueiredo, T., Dafonte, J. D., Almeida, A., Paz-Gonzalez, A. 2018. Effects of machinery trafficking in an agricultural soil assessed by Electrical Resistivity Tomography (ERT). Open Agric., 3, 378–385. DOI: 10.1515/opag-2018-0042

Giao, P. H., Chung, S. G., Kim, D. Y., and Tanaka, H. 2003. Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. Journal of Applied Geophysics, 52(4), 157–175. DOI: 10.1016/S0926-9851(03)00002-8

Gunn, D. A., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Dijkstra, T. A., Haslam, E., Kirkham, M., Wragg, J., Holyoake, S., and others 2015. Moisture monitoring in clay embankments using electrical resistivity tomography. Construction and Building Materials, 92, 82–94. DOI: 10.1016/j.conbuildmat.2014.06.007

Hadzick, Z. Z., Guber, A. K., Pachepsky, Y. A., Hill, R. L. 2011. Pedotransfer functions in soil electrical resistivity estimation. Geoderma, 164. 195–202. DOI: 10.1016/j.geoderma.2011.06.004

Hibert, C., Grandjean, G., Bitri, A., Travelletti, J., Malet, J. P. 2012. Characterising landslides through geophysical data fusion: example of the La Valette landslide (France). Eng. Geol., 128, 23–29. DOI: 10.1016/j.enggeo.2011.05.001

Himi, M., Casado, I., Sendros, A., Lovera, R., Rivero, L., Casas, A. 2018. Assessing preferential seepage and monitoring mortar injection through an earthen dam settled over a gypsiferous substrate using combined geophysical methods. Engineering Geology, 246, 212–221. DOI: 10.1016/j.enggeo.2018.10.002

Inazaki, T., Sakamoto, T. 2005. Geotechnical characterisation of levee by integrated geophysical surveying. Proceedings of the International Symposium on Dam Safety and Detection of Hidden Troubles of Dams and Dikes. Online available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7fda76b655ae47c9d132792afa19bb260e0acf56

Jodry, C., Palma Lopes, S., Fargier, Y., Sanchez, M., Côte, P. 2019. 2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study. Journal of Applied Geophysics, 167, 140–151. DOI: 10.1016/j.jappgeo.2019.05.008

Jerabek, J., Zumr, D., Dost´al, T. 2017. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil Tillage Res., 174, 231–240. DOI: 10.1016/j.still.2017.07.008

Kalinski, R. J., Kelly, W. E., 1993. Estimating water content of soils from electrical resistivity. Geotechnical Testing Journal, 16(3), 323–329. DOI: 10.1520/GTJ10053J

Kearey, P., Brooks, M., Hill, I. 2013. An introduction to geophysical exploration. John Wiley & Sons. Department of Earth Sciences University of Bristol 281 Pages.

Keller G.V., Frischknecht F.C. 1966. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford. 536 pages. Online avalilable at: https://archive.org/details/electricalmethod 00kell/page/n9/mode/2up

Kiss, T., Nagy, J., Fehérvári, I., Amissah, G. J., Fiala, K., Sipos, G. 2021. Increased flood height is driven by local factors on a regulated river with a confined floodplain, Lower Tisza, Hungary. Geomorphology, 389, 107858. DOI: 10.1016/j.geomorph.2021.107858

Kiss, T., Fiala, K., Gy, Sipos, Szatmári, G. 2019. Long-term hydrological changes after various river regulation measures: are we responsible for flow extremes. Hydrol. Res., 50(2), 417–430. DOI: 10.2166/nh.2019.095

Knox, R. L., Morrison, R. R., Wohl, E. E. 2022. Identification of artificial levees in the contiguous United States. Water Resources Research, 58(4), e2021WR031308. DOI: 10.1029/2021WR031308

Kovács, D. 1979. Árvízvédelem, folyó-és tószabályozás, víziutak Magyarországon (Flood control, regulation of rivers and lakes and waterways in Hungary). National Water Management Authority (OVH), Budapest. 734 pages.

Kun, Á., Katona, O., Sipos, G., Barta, K. 2013. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. Journal of Environmental Geography, 6(3-4), 49–54. DOI: 10.2478/jengeo-2013-0006

Lászlóffy, W. 1982. The Tisza. Akadémiai Kiadó, Budapest, p. 610 (in Hungarian)

Li Y., Craven J., Schweig E.S., Obermeir S.F. 1996. Sand Boils Induced by the 1993 Mississippi River Flood: Could They One Day be Misinterpreted as Earthquake Induced Liquefaction. Geology, 24(2), 171–174. DOI: 10.1130/0091-7613(1996)024<0171:SBIBTM>2.3.CO;2

Loke, M. H. 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys, 2004 Revised Edition. Tutorial: 2-D and 3-D Electrical Imaging Surveys, July, p. 136. Online available at: https://sites.ualberta.ca/~unsworth/UA-classes/223/loke_ course_notes.pdf

Lóczy, D., Kis, É., Schweitzer, F. 2009. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology, 113, 200–209. DOI: 10.1016/j.geomorph.2009.03.013

Morelli, G., Francese, R. 2013. A fast and integrated geophysical imaging system for large-scale levee monitoring. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems, (Denver, Colorado, 17–21 March 2013). DOI: 10.4133/segeep2013-261.1

Nagy L. 2010. Az árvízvédelmi gátak hossza. Nemzetközi összehasonlítás, Hidrológiai Közlöny, 90(5), 65–67 (in Hungarian). Online available at: http://www.hidrologia.hu/ vandorgyules/34/dolgozatok/word/0216_nagy_laszlo.pdf

Nasta P., Szabó, B., Romano, N. 2021. Evaluation of pedotransfer functions for predicting soil hydraulic properties: A voyage from regional to field scales across Europe. Journal of Hydrology: Regional Studies, 37, 20 pp. DOI: 10.1016/j.ejrh.2021.100903

OVF 2014. Árvízi kockázati térképezés és stratégiai kockázatkezelési terv készítése (Flood risk mapping and strategic risk management plan), project report of the National Water Directorate Hungary, Online available at: http://www.vizugy.hu/vizstrategia/documents/B91A47EC-E3B8-4D58-A15F-3E522958BEE8/Orszagos_elontes _1e_web.pdf

Ottoni, M. V., Filho, T. B. O., Lopes-Assad, M. L. R. C., Filho, O. C. R. 2019: Pedotransfer functions for saturated hydraulic conductivity using a database with temperate and tropical climate soils. Journal of Hydrology, 575, 1345–1358. DOI: 10.1016/j.jhydrol.2019.05.050

Ojha C. S. P., Singh, V. P., Adrian, D., D. 2001. Influence of Porosity on Piping Models of Levee Failure. ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 120(12), 1071–1074. DOI: 10.1061/(ASCE)1090-0241(2001) 127:12(1071)

Perri, M.T., Boaga, J., Bersan, S., Cassiani, G., Cola, S., Deiana, R., Simonini, P., Patti, S. 2014. River embankment characterisation: the joint use of geophysical and geotechnical techniques. J. Appl. Geophys., 110, 5–22. DOI: 10.1016/j.jappgeo.2014. 08.012

Pereira, J.O., Defossez, P., Richard, G. 2007. Soil susceptibility to compaction as a function of some properties of a silty soil as affected by tillage system. European Journal of Soil Science, 58, 34–44. DOI: 10.1111/j.1365-2389.2006.00798.x

Popescu, M., Şerban, R. D., Urdea, P., Onaca, A. 2016. Conventional geophysical surveys for landslide investigations: Two case studies from Romania. Carpathian Journal of Earth and Environmental Sciences, 11(1), 281–292. Online available at: https://www.researchgate.net/profile/Petru-Urdea/ publication/290390568_Conventional_geophysical_surveys_for_landslide_investigations_Two_case_studies_from_Romania/links/569a0ccf08ae748dfb019eb4/Conventional-geophysical-surveys-for-landslide-investigations-Two-case-studies-from-Romania.pdf

Reynolds, W. D., Elrick, D. E. 2002. Pressure infiltrometer. In: Dane, J. H., Topp, G. C. (Eds.), Methods of Soil Analysis: Part 4. Physical Methods. Soil Sci. Soc. Am., Inc., Madison, WI, 826–836. DOI: 10.4236/jep.2016.712146

Richard, G., Cousin, I., Sillon, J.F., Bruand, A., Guerif, J. 2001. Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. European Journal of Soil Science, 52, 49–58. DOI: 10.1046/j.1365-2389.2001.00357.x

Romero-Ruiz, A., Linde, N., Keller, T., Or, D. 2018. A Review of Geophysical Methods for Soil Structure Characterization. Reviews of Geophysics, 56(4), 672–697. DOI: 10.1029/2018RG000611

Robain, H., Descloitres, M., Ritz, M., Atangana, Q. Y. 1996. A multiscale electrical survey of a lateritic soil system in the rain forest of Cameroon. Journal of Applied Geophysics, 34(4), 237–253. DOI: 10.1016/0926-9851(95)00023-2

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., Wendroth, O. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone J., 7, 358–389. DOI: 10.2136/vzj2007.0143

Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G. 2005. Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83, 173–193. DOI: 10.1016/j.still.2004.10.004

Schwartz, B. F., Schreiber, M. E., Yan, T. 2008. Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of Hydrology, 362(3), 234–246. DOI: 10.1016/j.jhydrol.2008.08.027

Schweitzer F. 2002, Pleisztocen. In: Karatson D. (ed.) Pannon Enciklopedia Kertek, Budapest, 130–135.

Sheishah D., Sipos G., Hegyi A., Kozák P., Abdelsamei E., Tóth Cs., Onaca A., Páll, D. G. 2022. Assessing the Structure and Composition of Artificial Levees Along the Lower Tisza River (Hungary). Geographica Pannonica Journal, 26(3), 258–272. DOI: 10.5937/gp26-39474

Sjödahl, P., Dahlin, T., Johansson, S. 2009. Embankment dam seepage evaluation from resistivity monitoring data. NSG, 7(5–6), 463–474. DOI: 10.3997/1873–0604.2009023

Szűcs P., Nagy L., Ficsor J., Kovács S., Szlávik L., Tóth F., Keve G., Lovas A., Padányi J., Balatonyi L., Baross K., Sziebert J., Ficzere A., Göncz B., Dobó K. 2019 Árvízvédelmi ismeretek (Flood Protection). Online available at: http://hdl.handle.net/20.500.12944/13490 (in Hungarian)

Tabbagh, J., Samouëlian, A., Tabbagh, A., Cousin, I. 2007. Numerical modelling of direct current electrical resistivity for the characterisation of cracks in soils. Journal of Applied Geophysics, 62(4), 313–323. DOI: 10.1016/j.jappgeo.2007.01.004

Tímár, G. 2006. Decrease of the flood conveying capacity of the Middle Tisza River, Hungary, due to the regional surface deformation. EGU, Geophysical Research Abstracts, 8, 5701. DOI: 10.13140/2.1.4415.8401

Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., Tóth, G. 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, 66. 226–238. DOI: 10.1111/ejss.12192

USACE – U.S. Army Corps of Engineers 2000. EM 1110-2-1913, Engineering and Design - Design and Construction of Levees. Department of the Army, USACE, Washington, DC. Online available at: https://www.yumpu.com/en/document/ view/346990/department-of-the-army-em-1110-2-1913-us-army-corps-of-

Waxman, M. H., Smits, L. J. M. 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(02), 107–122. DOI: 10.2118/1863-A

Zhu, J.J., Kang, H.Z., Gonda, Y. 2007. Application of Wenner configuration to estimate soil water content in pine plantations on sandy land. Pedosphere, 17, 801–812. DOI: 10.1016/S1002-0160(07)60096-4