Mathematical modelling and experimentation of soy wax PCM solar tank using response surface method

Authors

DOI:

https://doi.org/10.14232/analecta.2020.2.35-42

Keywords:

solar tank, PCM, energy storage, process heat

Abstract

Worldwide, governments tend to reduce the CO2 emissions, and the storage of the solar energy system is still considered the most challenging problem to solve under the current state. Mainly, in relatively cold countries, as domestic hot water or for heat process services, where the loss in the tank is huge. Any improvement in the design can achieve a higher solar yield. Since water is the usual medium for heat storage, the integration with phase change material (PCM) can store energy when there is abundant energy and release it when it is needed. In this study, we conducted a capsulated PCM soy wax 52⁰C in an insulated water tank filled with 5 litres of water. To estimate the appropriate number of samples and the quantity of the PCM at two temperature levels using the response surface method with non-linear correlation for the charging phase. The results show 3.16, 0.95, 0.38 first degree magnitude effect for temperature, sample numbers, and wax quantity respectively and 0.29, -0.38 second-degree magnitude effect for quantity and temperature. In addition, an illustration of each two-factors interaction contour plots.  

Downloads

Download data is not yet available.

References

[1] A. J. Gallego et al., “Mathematical modeling of a PCM storage tank in a solar cooling plant,” Sol. Energy, vol. 93, pp. 1–10, 2013, doi: 10.1016/j.solener.2013.03.026.
[2] M. Al-ktranee, “overview of the hybrid solar system,” vol. 14, no. 1, pp. 100–108, 2020, doi: 10.14232/analecta.2020.1.100-108.
[3] M. Noro, R. M. Lazzarin, and F. Busato, “Solar cooling and heating plants: An energy and economic analysis of liquid sensible vs phase change material (PCM) heat storage,” Int. J. Refrig., vol. 39, no. 0, pp. 104–116, 2014, doi: 10.1016/j.ijrefrig.2013.07.022.
[4] R. Ghabour and P. Korzenszky, “Optimal design of solar-assisted industrial processes considering solar energy hybridized with pasteurizer,” in Researched Risk Factors of Food Chain, G. Géczi and P. Korzenszky, Eds. Gödöllő, Hungary: Szent István Egyetemi Kiadó, 2018, pp. 93–96.
[5] A. Tolnay, A. Nath, and A. Koris, “CHALLENGES OF SUSTAINABLE FOOD TECHNOLOGY - A REVIEW,” vol. 14, no. 1, pp. 118–129, 2020, doi: 10.14232/analecta.2020.1.118-129.
[6] L. F. Cabeza, M. Ibáñez, C. Solé, J. Roca, and M. Nogués, “Experimentation with a water tank including a PCM module,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 9, pp. 1273–1282, 2006, doi: 10.1016/j.solmat.2005.08.002.
[7] B. Zalba, J. Marin, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, vol. 704. 2003.
[8] M. Ibáñez, L. F. Cabeza, C. Solé, J. Roca, and M. Nogués, “Modelization of a water tank including a PCM module,” Appl. Therm. Eng., vol. 26, no. 11–12, pp. 1328–1333, 2006, doi: 10.1016/j.applthermaleng.2005.10.022.
[9] D. Haillot, E. Franquet, S. Gibout, and J. P. Bédécarrats, “Optimization of solar DHW system including PCM media,” Appl. Energy, vol. 109, pp. 470–475, 2013, doi: 10.1016/j.apenergy.2012.09.062.
[10] R. Padovan and M. Manzan, “Genetic optimization of a PCM enhanced storage tank for Solar Domestic Hot Water Systems,” Sol. Energy, vol. 103, pp. 563–573, 2014, doi: 10.1016/j.solener.2013.12.034.
[11] B. Kanimozhi and B. R. R. Bapu, “Experimental study of thermal energy storage in solar system using PCM,” Adv. Mater. Res., vol. 433–440, pp. 1027–1032, 2012, doi: 10.4028/www.scientific.net/AMR.433-440.1027.
[12] M. Medrano, M. O. Yilmaz, M. Nogués, I. Martorell, J. Roca, and L. F. Cabeza, “Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems,” Appl. Energy, vol. 86, no. 10, pp. 2047–2055, 2009, doi: 10.1016/j.apenergy.2009.01.014.
[13] J. Deng, S. Furbo, W. Kong, and J. Fan, “Thermal performance assessment and improvement of a solar domestic hot water tank with PCM in the mantle,” Energy Build., vol. 172, pp. 10–21, 2018, doi: 10.1016/j.enbuild.2018.04.058.
[14] Víg. P, Seres. I. Application of PCM in food storage, In: Géczi, Gábor; Korzenszky, Péter (szerk.) Researched Risk Factors of Food Chain, Gödöllő, Magyarország : Szent István Egyetemi Kiadó, (2018) pp. 165-168. , 4 p.
[15] L. Moens, D. M. Blake, D. L. Rudnicki, and M. J. Hale, “Advanced thermal storage fluids for solar parabolic trough systems,” J. Sol. Energy Eng. Trans. ASME, vol. 125, no. 1, pp. 112–116, 2003, doi: 10.1115/1.1531644.
[16] Bődi. Sz. , Víg. P, Farkas. I. Comparison of water and paraffin for heat storage, MECHANICAL ENGINEERING LETTERS: R AND D: RESEARCH AND DEVELOPMENT 17 pp. 7-13. , 7 p. (2018)

Downloads

Published

2020-12-08

How to Cite

Ghabour, R., & Korzenszky, P. . (2020). Mathematical modelling and experimentation of soy wax PCM solar tank using response surface method. Analecta Technica Szegedinensia, 14(2), 35–42. https://doi.org/10.14232/analecta.2020.2.35-42

Issue

Section

Articles