Review and Prospects of Xanthan Application in Water Contaminants Removal
DOI:
https://doi.org/10.14232/analecta.2024.3.39-48Keywords:
biopolzmer, xanthan, environmental application, water contaminants removalAbstract
This review explores the novel perspectives and application of xanthan in the removal of emerging water contaminants. Xanthan is a nontoxic, biocompatible, and biodegradable biopolymer of microbial origin. Industrial production of xanthan is usually conducted by aerobic submerged batch cultivation of the bacterium Xanthomonas campestris ATCC 13951 on the medium containing glucose or sucrose under optimal conditions, and findings of researchers worldwide indicate that xanthan can be successfully biosynthesized on media containing different waste streams, using various Xanthomonas strains. Common application of xanthan is in the food industry as a stabilizer, thickener, and emulsifier because of its high viscosity at lower concentrations and excellent solubility in hot and cold water. The application of xanthan is not only limited to the food and other branches of industry, but also to medicine, biomedical engineering, agriculture, and wastewater treatment. Recent studies have confirmed the excellent photocatalytic activity and emulsifying capacity of xanthan biosynthesized on waste-based media, which offers promising potential for its application in the decontamination of environment. Moreover, the xanthan-based hydrogel has great selectivity for the cationic dye and on the other side, chemically modified xanthan has a great potential as an adsorbent for the removal of metal ions.
Downloads
References
L. Rong, M. Shen, H. Wen, W. Xiao, J. Li, J. Xie, Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels, Food Hydrocolloids, 125 (2021), 107391.
https://doi.org/10.1016/j.foodhyd.2021.107391
N. Srivastava, A.R. Choudhury, Microbial Polysaccharide-Based Nanoformulations for Nutraceutical Delivery, ACS Omega, 7 (45) (2022), pp. 40724-40739.
https://doi.org/10.1021/acsomega.2c06003
M. Domżał-Kędzia, M. Ostrowska, A. Lewińska, M.Łukaszewicz, Recent Developments and Applications of Microbial Levan, A Versatile Polysaccharide-Based Biopolymer, Molecules, 28 (14) (2023), 5407.
https://doi.org/10.3390/molecules28145407
M. Ozdal, E.B. Kurbanoglu, Valorisation of chicken feathers for xanthan gum production using Xanthomonas campestris MO-03, Journal of Genetic Engineering and Biotechnology, 16 (2018), pp. 259-263.
https://doi.org/10.1016/j.jgeb.2018.07.005
A.S. Demirci, I. Palabiyik, D. Apaydın, M. Mirik, T. Gumus, Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: Process optimization and fermentation kinetics, LWT - Food Science & Technology, 101 (2019), pp. 40-47.
http://dx.doi.org/10.1016/j.lwt.2018.11.018
G. Lara, S. Yakoubi, C.M. Villacorta, K. Uemura, I. Kobayashi, C. Takahashi, M. Nakajima, M.A. Neves, Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera), Food research international, 137 (2020), 109723.
https://doi.org/10.1016/j.foodres.2020.109723
A. Dzionek, D. Wojcieszyńska, U. Guzik, Use of xanthan gum for whole cell immobilization and its impact in bioremediation - A review, Bioresource technology 351 (2022), 126918.
https://doi.org/10.1016/j.biortech.2022.126918
D.F.S. Petri, Xanthan gum: A versatile biopolymer for biomedical and technological applications, Journal of Applied Polymer Science, 132 (23) (2015), 42035.
https://doi.org/10.1002/app.42035
I. Zahović, Dodić, J., S. Markov, J. Grahovac, M. Grahovac, Z. Trivunović, Screening of local wild-type Xanthomonas spp. for xanthan biosynthesis using media with different carbon sources, Romanian Biotechnological Letters, 26 (4) (2021), pp. 2800-2807.
http://dx.doi.org/10.25083/rbl/26.4/2800.2807
I. Zahović J. Dodić D. Vučurović S. Dodić B. Bajić Z. Trivunović, Xanthan production on crude glycerol by lab-scale bioreactor cultivation of local Xanthomonas isolate, Journal of Engineering & Processing Management, 14 (2) (2022), pp. 30-39.
https://doi.org/10.7251/jepm2202030z
L.V. Brandão, D.J. Assis, J.A. López, M.C.A. Espiridião, E.M. Echevarria, J.I. Druzian, Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization, Brazilian Journal of Chemical Engineering, 20 (2013), pp. 737-746.
https://doi.org/10.1590/S0104-66322013000400006
Z. Wang, J. Wu, L. Zhu, X. Zhan, Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol, Bioresource Technology, 211 (2016), pp. 390-397.
https://doi.org/10.1016/j.biortech.2016.03.096
I. Zahović, J. Dodić, J. Grahovac, A. Ranitović, M. Grahovac, I. Pajčin, Z. Trivunović, Screening of Local Wild Xanthomonas Species for Xanthan Production on Crude Glycerol-based Medium, Periodica Polytechnica Chemical Engineering, 66 (4) (2022), pp. 641-649.
https://doi.org/10.3311/PPch.19964
M. Ozdal, E.B. Kurbanoglu, Valorisation of chicken feathers for xanthan gum production using Xanthomonas campestris MO-03, Journal of Genetic Engineering and Biotechnology, 16 (2018), pp. 259-263.
https://doi.org/10.1016/j.jgeb.2018.07.005
F.A. Santos, A.C. Júnior, T. Pacheco, C.E. Silva, A.K. Souza, Bioconversion of Agro-industrial Wastes Into Xanthan Gum, Chemical Engineering Transactions, 49 (2016), pp. 145-150.
http://dx.doi.org/10.3303/CET1649025
Z. Rončević, J. Grahovac, S. Dodić, D. Vučurović, J. Dodić, Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimisation, Food and Bioproducts Processing, 117 (2019), pp. 113-125.
https://doi.org/10.1016/j.fbp.2019.06.019
J. Kang, H. Yue, X. Li, C. He, Q. Li, L. Cheng, J. Zhang, Y. Liu, S. Wang, Q. Guo, Structural, rheological and functional properties of ultrasonic treated xanthan gums, International journal of biological macromolecules, 246 (2023), 125650.
https://doi.org/10.1016/j.ijbiomac.2023.125650
E.M. Nsengiyumva, P. Alexandridis, Xanthan gum in aqueous solutions: Fundamentals and applications, International journal of biological macromolecules, 216 (2022), pp. 583-604.
https://doi.org/10.1016/j.ijbiomac.2022.06.189
P. Gupta, V. Nair, J.S. Sangwai, Phase Equilibrium of Methane Hydrate in Aqueous Solutions of Polyacrylamide, Xanthan Gum, and Guar Gum, Journal of Chemical & Engineering Data, 64 (4) (2019), pp. 1650-1661.
https://doi.org/10.1021/acs.jced.8b01194
M. Cofelice, M.C. Messia, E. Marconi, F. Cuomo, F. Lopez, Effect of the xanthan gum on the rheological properties of alginate hydrogels, Food Hydrocolloids, 142 (2023), 108768.
https://doi.org/10.1016/j.foodhyd.2023.108768
F. García-Ochoa, V.E. Santos, J.A. Casas, E. Gómez, Xanthan gum: production, recovery, and properties, Biotechnology Advances, 18 (7) (2000), pp. 549-579.
https://doi.org/10.1016/S0734-9750(00)00050-1
.M. Bhat, S.M. Wani, S.A. Mir, F.A. Masoodi, Advances in xanthan gum production, modifications and its applications, Biocatalysis and Agricultural Biotechnology, 42 (2022), 102328.
http://dx.doi.org/10.1016/j.bcab.2022.102328
K.I. Sherley, R. Priyadharshini, Review on production of xanthan gum in batch and continuous reactors, International Journal of ChemTech Research,8 (2) (2015), pp.711-717.
T. Ramasamy, U.D. Kandhasami, H. Ruttala, S. Shanmugam, Formulation and evaluation of xanthan gum based aceclofenac tablets for colon targeted drug delivery, Brazilian Journal of Pharmaceutical Sciences, 47 (2) (2011), pp. 299-311.
https://doi.org/10.1590/S1984-82502011000200011
A.H. Lachke, Xanthan - A versatile gum, Resonance, 9 (2004), pp. 25-33.
https://doi.org/10.1007/BF02834866
A. Bilić, S.J. Armaković, M.M. Savanović, I. Zahović, J. Dodić, Z. Trivunović, I. Savić, T. Gajo, S. Armaković, Photocatalytic application of bacterial-derived biopolymer in removing pharmaceutical contaminants from water. Catalysis Communications, 186 (2024), 106821.
https://doi.org/10.1016/j.catcom.2023.106821
J.A. Da Silva, L.G. Cardoso, D.J. Assis, G.V.P. Gomes, M.B.P.P. Oliveira, C.O. de Souza, J.I. Druzian, Xanthan gum production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from lignocellulosic agroindustrial wastes, Applied Biochemistry and Biotechnology, 186 (2) (2018), pp. 750-763.
https://doi.org/10.1007/s12010-018-2765-8
A.J. Ebele, M.A. Abdallah, S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerging Contaminants, 3 (1) (2017), pp. 1-16.
https://doi.org/10.1016/j.emcon.2016.12.004
F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, Journal of environmental management, 92 (3) (2011), pp. 407-18.
https://doi.org/10.1016/j.jenvman.2010.11.011
K. Balíková, B. Farkas, P. Matúš, M. Urík, Prospects of Biogenic Xanthan and Gellan in Removal of Heavy Metals from Contaminated Waters, Polymers, 14 (23) (2022), 5326.
https://doi.org/10.3390/polym14235326
Z. Yang, G. Zhang, Q. Teng, X. Zhu, Removal of Pb2+ from aqueous solution by xanthan gum in the presence of xanthate, Reactive and Functional Polymers, 175 (2022), 05288.
https://doi.org/10.1016/j.reactfunctpolym.2022.105288
A. Rahmatpour, A.H. Alizadeh, N. Alijani, Biofilm hydrogel derived from physical crosslinking (self-assembly) of xanthan gum and chitosan for removing Cd2+, Ni2+, and Cu2+ from aqueous solution, International journal of biological macromolecules, 266 (2) (2024), 131394.
https://doi.org/10.1016/j.ijbiomac.2024.131394
V. Fakhri, A. Jafari, L.F. Vahed, C. Su, V. Pirouzfar, Polysaccharides as eco-friendly bio-adsorbents for wastewater remediation: Current state and future perspective, Journal of Water Process Engineering, 54 (2023), 103980.
https://doi.org/10.1016/j.jwpe.2023.103980
I. Zahović, Z. Rončević, J. Dodić, J. Grahovac, S. Dodić, Mogućnost primene ksantana za uklanjanje jona metala iz otpadnih voda, Journal of Engineering & Processing Management, 9 (1) (2017), pp. 86-93.
https://doi.org/10.7251/JEPM1709086Z
F.A. Alharthi, R.H. Alshammari, I. Hasan, Synthesis of Xanthan Gum Anchored α-Fe2O3 Bionanocomposite Material for Remediation of Pb (II) Contaminated Aquatic System, Polymers, 15 (5) (2023), 1134.
https://doi.org/10.3390/polym15051134
M. Rostamian, H. Hosseini, V. Fakhri, P.Y. Talouki, M. Farahani, A.J. Gharehtzpeh, V. Goodarzi, C. Su, Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites, Chemosphere, 289 (2021), 133219.
https://doi.org/10.1016/j.chemosphere.2021.133219
A. Elgamal, N.A. Abd El‐Ghany, G.R. Saad, Highly reactive adsorbent based on carboxymethyl xanthan gum‐g‐poly(4‐vinylpyridine) copolymer for the potential removal of Acid Orange 10 dye and Cr( VI ) ions for water treatment, Journal of Applied Polymer Science, 139 (2022), e-53179.
https://doi.org/10.1002/app.53179
D.G. Njuguna, H. Schönherr, Smart and Regeneratable Xanthan Gum Hydrogel Adsorbents for Selective Removal of Cationic Dyes, Journal of Environmental Chemical Engineering, 10 (3) (2022), 107620.
https://doi.org/10.1016/j.jece.2022.107620
R. Ahmad, A.J. Mirza, Adsorptive removal of heavy metals and anionic dye from aqueous solution using novel Xanthan gum-Glutathione/ Zeolite bionanocomposite, Groundwater for Sustainable Development, 7 (2018), pp. 305-312.
https://doi.org/10.1016/j.gsd.2018.07.002
H. Mittal, R. Babu, S.M. Alhassan, Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution, International journal of biological macromolecules, 143 (2019), pp. 413-423.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ida Zahović, Jelena Dodić, Zorana Trivunović
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (C) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja,Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 337-00-110/2023-05/25;451-03-65/2024-03/200134;451-03-66/2024-03/200134 -
Provincial Secretariat for Higher Education and Scientific Research, Autonomous Province of Vojvodina
Grant numbers 142-451-3166/2023-01/01