Detection of Plastic Greenhouses Using High Resolution Rgb Remote Sensing Data and Convolutional Neural Network

Main Article Content

Balázs Jakab
Boudewijn van Leeuwen
Zalán Tobak

Abstract

Agricultural production in greenhouses shows a rapid growth in many parts of the world. This form of intensive farming requires a large amount of water and fertilizers, and can have a severe impact on the environment. The number of greenhouses and their location is important for applications like spatial planning, environmental protection, agricultural statistics and taxation. Therefore, with this study we aim to develop a methodology to detect plastic greenhouses in remote sensing data using machine learning algorithms.


This research presents the results of the use of a convolutional neural network for automatic object detection of plastic greenhouses in high resolution remotely sensed data within a GIS environment with a graphical interface to advanced algorithms. The convolutional neural network is trained with manually digitized greenhouses and RGB images downloaded from Google Earth. The ArcGIS Pro geographic information system provides access to many of the most advanced python-based machine learning environments like Keras – TensorFlow, PyTorch, fastai and Scikit-learn. These libraries can be accessed via a graphical interface within the GIS environment.


Our research evaluated the results of training and inference of three different convolutional neural networks. Experiments were executed with many settings for the backbone models and hyperparameters. The performance of the three models in terms of detection accuracy and time required for training was compared. The model based on the VGG_11 backbone model (with dropout) resulted in an average accuracy of 79.2% with a relatively short training time of 90 minutes, the much more complex DenseNet121 model was trained in 16.5 hours and showed a result of 79.1%, while the ResNet18 based model showed an average accuracy of 83.1% with a training time of 3.5 hours.

Downloads

Download data is not yet available.

Article Details

How to Cite
Jakab, Balázs, Boudewijn van Leeuwen, and Zalán Tobak. 2021. “Detection of Plastic Greenhouses Using High Resolution Rgb Remote Sensing Data and Convolutional Neural Network”. Journal of Environmental Geography 14 (1-2):28-46. https://doi.org/10.2478/jengeo-2021-0004.
Section
Articles

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Online available at: https://arxiv.org/pdf/1603.04467.pdf

Agüera, F., Aguilar, M.A., Aguilar, F.J. 2008. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS Journal of Photogrammetry and Remote Sensing 63 (6), 635–646. DOI: 10.1016/j.isprsjprs.2008.03.00310.1016/j.isprsjprs.2008.03.003

Agüera, F., Liu, G. G. 2009. Automatic greenhouse delineation from QuickBird and Ikonos satellite images. Computers and Electronics in Agriculture 66, 191–200. DOI: 10.1016/j.compag.2009.02.00110.1016/j.compag.2009.02.001

Chollet, F. 2015. Keras. Online available at: https://github.com/fchollet/keras

Davies, E.R. 2018. Computer Vision: Principles, Algorithms, Applications, Learning. Academic Press, 5th edition, 866 p. DOI: 10.1016/C2015-0-05563-010.1016/C2015-0-05563-0

Ding, P., Zheng, Y., Deng, J-W., Jia, P., Kuijper, A. 2018. A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing 141, 208–218. DOI: 10.1016/j.isprsjprs.2018.05.00510.1016/j.isprsjprs.2018.05.005

ESRI 2021, ArcGIS Pro online help. Online available at: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/an-overview-of-the-deep-learning-toolset-in-image-analyst.htm

Everingham, M., Gool, V., L., Williams, I., K., C., Winn, J., Zisserman, A. 2010. The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision 88, 303–338. DOI: 10.1007/s11263-009-0275-410.1007/s11263-009-0275-4

Flood, N., Watson, F., Collett, L. 2019. Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia. International Journal of Applied Earth Observation and Geoinformation 82, 101897. DOI: 10.1016/j.jag.2019.10189710.1016/j.jag.2019.101897

Gallwey, J., Robiati, C., Coggan, J., Vogt, D., Eyre, M. 2020. A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sensing of Environment 248: 111970. DOI: 10.1016/j.rse.2020.11197010.1016/j.rse.2020.111970

Goodfellow, I., Bengio, Y., Courville, A. 2016. Deep Learning. MIT Press, Online available at: http://www.deeplearningbook.org

González-Yebra, Ó., Aguilar, A. M., Nemmaoui, A., Aguilar, J., F. 2018. Methodological proposal to assess plastic greenhouses land cover change from the combination of archival aerial orthoimages and Landsat data. Biosystems Engineering 175, 36–51. DOI: 10.1016/j.biosystemseng.2018.08.00910.1016/j.biosystemseng.2018.08.009

Guo, Y., Xu, Y., Li, S. 2020. Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network. Automation in Construction 112. 103124. DOI: 10.1016/j.autcon.2020.10312410.1016/j.autcon.2020.103124

Howard, J., Gugger, S. 2020. Fastai: A layered API for Deep Learning. Information 11 (2), 108. DOI: 10.3390/info1102010810.3390/info11020108

Jiang, B., Ma, X., Lu, Y., Li, Y., Feng, L., Shi, Z. 2019. Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets. Infrared Physics & Technology 97, 229–234. DOI: 10.1016/j.infrared.2018.12.04010.1016/j.infrared.2018.12.040

Kattenborn, T., Leitloff, J., Schiefer, F., Hinz, S. 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 173, 24–49. DOI: 10.1016/j.isprsjprs.2020.12.01010.1016/j.isprsjprs.2020.12.010

Koc-San D. 2013. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. Journal of Applied Remote Sensing 7 (1): 073553. DOI: 10.1117/1.JRS.7.07355310.1117/1.JRS.7.073553

LeCun y., Boser, B., Denker, S. J., Henderson, D., Howard, E. R., Hubbard, W., Jackel, D. L. 1990. Handwritten Digit Recognition with a Back-Propagation Network. pp. 396–403.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, Y. C., Berg, C. A. 2016. SSD: Singe Shot Multibox Detector. European Conference on Computer Vision 2016, 21–37. DOI: 10.1007/978-3-319-46448-0_210.1007/978-3-319-46448-0_2

McCarthy, J., Minsky, I. M., Rochester, N., Shannon, E., C. 1955. A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27 (4), pp. 12–14. DOI: 10.1609/aimag.v27i4.1904

Mezősi, G. 2011. Magyarország természetföldrajza, (Physical geography of Hungary) Academic Press, Budapest, pp. 393.

Michie, D. 1968. „Memo” Functions and Machine Learning. Nature 218 (5136), 19–22. DOI: 10.1038/218019a010.1038/218019a0

Müller, B., Reinhardt, J., Strickland, M. T. 1995. Neural Networks: An Introduction. Springer, Berlin, pp. 307.

Nemmaoui, A., Aguilar, J. F., Aguilar, A. M., Qin, R. 2019. DSM and DTM generation from VHR satellite stereo imagery over plastic covered greenhouse areas. Computer and Electronics in Agriculture 164, 104903. DOI: 10.1016/j.compag.2019.10490310.1016/j.compag.2019.104903

Nilsson, N., J. 1980. Principles of artificial intelligence. Morgan Kaufmann, California, pp. 475.

Novelli, A., Aguilar, A.M., Nemmaoui, A., Aguilar, J. F., Tarantino, E. 2016. Performance evaluation of ebject based greenhouse detection from Sentinel-2 MSI and LANDSAT 8 OLI data: A case study from Almería (Spain). International Journal of Applied Earth Observation and Geoinformation 52, 403–411. DOI: 10.1016/j.jag.2016.07.01110.1016/j.jag.2016.07.011

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamakurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Cornell University. Online available at: https://arxiv.org/pdf/1912.01703v1.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michael, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830. Online available at: https://arxiv.org/pdf/1201.0490.pdf

Pi, Y., Nath, D. N., Behzadan, H. A. 2020. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics 43, 101009. DOI: 10.1016/j.aei.2019.10100910.1016/j.aei.2019.101009

Poirson, P., Ammirato, P., Fu, C. Y., Liu, W., Kosĕcká, J., Berg, C. A. 2016. Fast single shot detection and pose estimation. Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 2016, pp. 676–684, DOI: 10.1109/3DV.2016.7810.1109/3DV.2016.78

Rai, K. A., Mandal, N., Singh, A., Singh, K. K. 2020. Landsat 8 OLI Satellite Image Classification using Convolutional Neural Network. Procedia Computer Science 167, 987–993. DOI: 10.1016/j.procs.2020.03.39810.1016/j.procs.2020.03.398

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., Schmidtlein, S. 2020. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing 170, 205–215. DOI: 10.1016/j.isprsjprs.2020.10.01510.1016/j.isprsjprs.2020.10.015

Simon, A., H. 1995. Artificial intelligence: an empirical science. Artificial Intelligence 77 (1), 95–127. DOI: 10.1016/0004-3702(95)00039-H10.1016/0004-3702(95)00039-H

Virnodkar, S.S., Pachghare, C.V., Jha, K.S. 2020. CaneSat dataset to leverage convolutional neural networks for sugarcane classification from Sentinel-2. Journal of King Saud University – Computer and Information Sciences. DOI: 10.1016/j.jksuci.2020.09.005 (in press)10.1016/j.jksuci.2020.09.005

Watanabe, S., Sumi, K., Ise, T. 2018. Using deep learning for bamboo forest detection from Google Earth images. bioRxiv 351643, DOI: 10.1101/35164310.1101/351643

Wu, C., Deng, J. S., Wang, K., Ma, L. G., Tahmassebi, A. R. S. 2016. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. International Journal of Agricultural and Biological Engineering 9, 79–88. DOI: 10.3965/j.ijabe.20160901.1414

Yang, D., Chen, J., Zhou, Y., Chen, X., Chen, X., Cao, X. 2017. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS Journal of Photogrammetry and Remote Sensing 128, 47–60. DOI: 10.1016/j.isprsjprs.2017.03.00210.1016/j.isprsjprs.2017.03.002

Yang, G., Xu, R., Chen, Yi., Wu, Z., Du, Y., Liu, S., Qu, Z., Guo, K., Peng, C., Chang, J., Ge., Y. 2021. Identifying the greenhouse by Google Earth Engine to promote the reuse of fragmented land in urban fringe. Sustainable Cities and Society 67, 102743 DOI: 10.1016/j.scs.2021.10274310.1016/j.scs.2021.102743

Zhang, D., Pan, Y., Zhang, J., Hu, T., Z, J., Li, N., Chen, Q. 2020. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sensing of Environment 247, 111912. DOI: /10.1016/j.rse.2020.11191210.1016/j.rse.2020.111912