The Importance of Protein Fingerprints in Bacterial Identification The Maldi-Tof Technique
Main Article Content
Abstract
The available literary sources suggest the general applicability and benefits of the Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) in the field of microbiological identification including food quality and safety, and the clinical field. Due to its high reliability, MALDI-TOF might generally be the alternative to the sequence-based and serological-based methods. The essence of the technique is to map the unique protein pattern of microbes that contributes to characterizing a wide variety of microorganisms, including bacteria, fungi, and viruses. On the other hand, these applications only have reliable results under certain conditions (homogeneous infection, adequate cell count, appropriate separation technique). In this review, we focused on the application of MALDI-TOF MS for the environmental field where it has significant potential in the identification, differentiation, and categorization of environmental samples which includes (soil, water, and air), furthermore, some challenges, especially in case of the extreme conditions environment and summarize developments that have been enabled for routine application in the field of environment.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
Funding data
-
European Regional Development Fund
Grant numbers GINOP-2.2.1-15-2017-00039 -
European Social Fund
Grant numbers EFOP-3.6.3-VEKOP-16-2017-00005
References
Anhalt, J.P., Fenselau, C. 1975. Identification of bacteria using mass spectrometry. Anal. Chem. 47, 219–225. https://doi.org/10.1021/ac60352a007
Arias, D., Cisternas, L.A., Rivas, M., 2017. Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination 405, 19. https://doi.org/10.1016/ j.desal.2016.11.027
Ashfaq, M.Y., Al-Ghouti, M.A., Qiblawey, H., Rodrigues, D.F., Hu, Y., Zouari, N. 2019. Isolation, identification, and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. Science of The Total Environment 656, 910–920. https://doi.org/10.1016/j.scitotenv.2018.11.477
Batoy, S.M.A.B., Akhmetova, E., Miladinovic, S., Smeal, J., Wilkins, C.L. 2008. Developments in MALDI mass spectrometry: The quest for the perfect matrix. Appl. Spectrosc. Rev 43, 485–550. https://doi.org/10.1080/ 05704920802108198
Beavis, R.C., Chait, B.T. 1989. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom 3, 432–435. https://doi.org/10.1002/ rcm.1290031207
Bereschenko, L.A., Stams, A.J.M., Euverink, G.J.W., Van,M.C.M., 2010. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp. Appl. Environ. Microbiol. 76, 2623–2632. https://doi.org/10.1128/AEM.01998-09
Bizzini, A., Greub, G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect 16, 1614–1619. https://doi.org/10.1111/j.1469-0691.2010.03311.x
Carlsohn, E., Carol, L., Nilsson, E.C. 2007. Chapter 12. Proteomic Techniques for Functional Identification of Bacterial Adhesins. In Lectins; Nilsson, C.L., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 299–325. https://doi.org/10.1016/B978-044453077-6/50013-2
Croxatto, A., Prod’hom, G., Greub, G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev 36, 380–407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., Vandamme, P. 2011. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Systematic and Applied Microbiology 34, 20–29. https://doi.org/10.1016/j.syapm.2010.11.003
Dieckmann, R., Graeber, I., Kaesler, I., Szewzyk, U. von Dohren, H. 2005. Appl. Microbiol. Biotechnol., 67, 539–548. https://link.springer.com/article/10.1007/s00253-004-1812-2
Donohue, M. J., Best, J. M., Smallwood, A. W., Kostich, M., Rodgers, M., Shoemaker, J. A. 2007. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry. Analytical chemistry 79(5), 1939–1946. https://doi.org/10.1021/ac0611420
Edouard, S., Couderc, C., Raoult, D., Fournier, P. E. 2012. Mass spectrometric identification of Propionibacterium isolates requires database enrichment. Advances in Microbiology 2, 497–504. https://www.scirp.org/html/12-2270081_25851.htm
Elbehiry, A., Al-Dubaib, M., Marzouk, E., Albejaidi, F. M., Radwan, M. A., Alzaben, F., Alharbi, A. 2019. Proteomic Analysis and Molecular Characterization of Airborne Bioaerosols in Indoor and Outdoor Environment in Al-Qassim Region, Saudi Arabia. Journal of Pure and Applied Microbiology 13(2), 1041–1053. https://dx.doi.org/10.22207/ JPAM.13.2.42
Emami, K., Askari, V., Ullrich, M., Mohinudeen, K., Anil, C.A., Khandeparker, L., Burgess, J.G., Mesbahi, E., 2012. Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS One 7(6). https://doi.org/10.1371/journal.pone.0038515
Ercolini, D., Russo, F., Blaiotta, G., Pepe, O.,Mauriello, G., Villani, F., 2007. Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl. Environ. Microbiol. 73, 2354–2359. https://doi.org/10.1128/AEM.02603-06
Faron, M.L., Buchan, B.W., Hyke, J., Madison, N., Lillie, J.L., Granato, P.A., Wilson, D.A., Procop, G.W., Novak-Weekley, S., Marlowe, E., Joven, C., Griego-Fullbright, C.,Kindig, K., Timm, K., Young, S., Ledeboer, N. A. 2015. Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinical aerobic gram-negative bacterial isolates. PLoS ONE 10, e0141350. https://doi.org/10.1371/journal.pone.0141350
Ferreira, L., Sánchez-Juanes, F., García-Fraile, P., Rivas, R., Mateos, P. F., Martínez-Molina, E., Gonzalez-Buitrago, M., Velázquez, E. 2011. MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One 6(5), e20223. https://doi.org/10.1371/journal.pone.0020223
Fracchia L., Pietronave S., Rinaldi M., Martinotti M.G. 2006. The assessment of airborne bacterial contamination in three composting plants revealed site-related biological hazards and seasonal variations. J. Appl. Microbiol. 100, 973–984. https://doi.org/10.1111/j.1365-2672.2006.02846.x
Gálvez-Martín, P., González, M.B., Martínez, A.R., Lara, V.G., Naveros, B.C. 2012. Isolation and characterization of the environmental bacterial and fungi contamination in a pharmaceutical unit of mesenchymal stem cell for clinical use. Biologicals. 40, 330–337. https://doi.org/10.1016/ j.biologicals.2012.06.002
Garcia L.B., Wrobel, K., Corrales E.A.R., Serrano T.O., Enciso D.I., Wrobel, K. 2021. Mass spectrometry-based identification of bacteria isolated from industrially contaminated sites in Salamanca (Mexico) and evaluation of their potential for DDT degradation. Folia Microbiologica 66, 355–369. https://link.springer.com/article/10.1007/s12223-020-00848-8
Giebel, R., Worden, C., Rust, S.M., Kleinheinz, G.T., Robbins, M., Sandrin, T.R. 2010. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv. Appl. Microbiol 71, 149–184. https://doi.org/10.1016/S0065-2164(10)71006-6
Gorny R., Reponen T., Willeke K., Schmechel D., Robine E., Boissier M., Grinshpun S.A. 2002. Fungal fragments as indoor air biocontaminants. Appl. Environ. Microbiol. 68: 3522–3531. https://doi.org/10.1128/AEM.68.7.3522-3531.2002
Handal, N., Bakken, J.S., Smith, T.H., Johnsen, B.O., Leegaard, T.M. 2015. Anaerobic blood culture isolates in a Norwegian university hospital: Identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. Apmis 123, 749–758. https://doi.org/10.1111/apm.12410
Heim, S., Ferrer, M., Heuer, H., Regenhardt, D., Nimtz, M., Timmis, K. N. 2003. Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environmental Microbiology 5(12), 1257–1269. https://doi.org/10.1111/j.1462-2920.2003.00465.x
Hernández, I. A., Flores, J. L. H., Gómez, S. R., Hernández, A. C., Gutierrez, C. S., Xechit, I.,Campos-Guillen, J. 2016. Identification by MALDI-TOF Mass Spectrometry of Bacteria in Air Samples in a Biosafety Level 2 Laboratory. Modern Environmental Science and Engineering 2(4), 238–245. https://doi.org/10.15341/mese(2333-2581)/ 04.02.2016/005
Ivnitsky, H., Minz, D., Kautsky, L., Preis, A., Ostfeld, A., Semiat, R., Dosoretz, C.G., 2010. Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment. J. Membr. Sci. 360, 165–173. https://doi.org/10.1016/j.memsci.2010.05.007
Jančová, P., Pachlová, V., Čechová, E., Cedidlová, K., Šerá, J., Pištěková, H., Bunka, F., Buňková, L. 2020. Occurrence of biogenic amines producers in the wastewater of the dairy industry. Molecules 25(21), 5143. https://doi.org/10.3390/ molecules25215143
Jones, J.J., Stump, M.J., Fleming, R.C., Lay, J.O., Wilkins, C.L. 2003. Investigation of MALDI-TOF and FT-MS Techniques for Analysis of Escherichia coli Whole Cells. Anal. Chem. 7, 1340–1347. https://doi.org/10.1021/ac026213j
Keys, C.J., Dare, D.J., Sutton, H., Wells, G., Lunt, M., McKenna, T., McDowall, M., Shah, H.N. 2004. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterization of bacteria implicated in human infectious diseases. Infect Genet. Evol 4, 221–242. https://doi.org/10.1016/j.meegid.2004.02.004
Kopcakova, A., Stramova, Z., Kvasnova, S., Godany, A., Perhacova, Z., Pristas, P. 2014. Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chemical Papers 68, 1435–1442. https://doi.org/10.2478/ s11696-014-0612-0
Koubek, J., Uhlik, O., Jecna, K., Junkova, P., Vrkoslavova, J., Lipov, J., Kurzawova, V., Macek, T., Mackova, M. 2012. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. International Biodeterioration & Biodegradation 69, 82–86. https://doi.org/10.1016/j.ibiod.2011.12.007
Krader, P., Emerson, D. 2004. Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles 8, 259–268. https://link.springer.com/article/10.1007/s00792-004-0382-7
Lacerda, C.M., Choe, L.H., Reardon, K.F. 2007. Metaproteomic analysis of a bacterial community response to cadmium exposure. Journal of proteome research 6(3), 1145–1152. https://doi.org/10.1021/pr060477v
Leung, M., Chan, A. H. S., 2006. Control and management of hospital indoor air quality. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 12, SR17-R23. Online available at https://medscimonit.com/abstract/index/idArt/447117
Lovecka, P., Pacovska, I., Stursa, P., Vrchotova, B., Kochankova, L., Demnerova, K. 2015. Organochlorinated pesticide degrading microorganisms isolated from contaminated soil. New biotechnology 32(1), 26–31. https://doi.org/10.1016/j.nbt.2014.07.003
Munoz, R., López-López, A., Urdiain, M., Moore, E. R., Rosselló-Móra, R. 2011. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Systematic and applied microbiology 34(1), 69–75. https://doi.org/10.1016/j.syapm.2010.11.012
Rychert, J.A., 2019. Benefits, and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect 2, 1–5. https://doi.org/10.29245/2689-9981/2019/4.1142
Santos, I. C., Hildenbrand, Z. L., Schug, K. A. 2016. Applications of MALDI-TOF MS in environmental microbiology. Analyst 141(10), 2827–2837. https://doi.org/10.1039/ C6AN00131A
Simke, F., Fischer, P., Marx, G., Schweikhard, L. 2022. Simulations of a digital ion filter and a digital ion trap for heavy biomolecules. Int. J. Mass Spectrom. 473, 116779. https://doi.org/10.1016/j.ijms.2021.116779
Singh, O.V. 2006. Proteomics and metabolomics: The molecular make‐up of toxic aromatic pollutant bioremediation. Proteomics 6(20), 5481–5492. https://doi.org/10.1002/pmic.200600200
Sorkhoh, N.A., Al-Awadhi, H., Al-Mailem, D.M., Kansour, M.K., Khanafer, M., Radwan, S.S., 2010. Agarolytic bacteria with hydrocarbon-utilization potential in fouling material from the Arabian Gulf coast. Int. Biodeterior. Biodegrad. 64, 554–559. https://doi.org/10.1016/j.ibiod.2010.06.007
Spanu, T., De Carolis, E., Fiori, B., Sanguinetti, M., D’Inzeo, T., Fadda, G., Posteraro, B. 2011. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. Clin. Microbiol. Infect 17, 44–49. https://doi.org/10.1111/j.1469-0691.2010.03181.x
Štursa, P., Uhlík, O., Kurzawová, V., Koubek, J., Ionescu, M., Strohalm, M., Lovecka, P., MacEk, T., Macková, M. 2009. Approaches for diversity analysis of cultivable and non-cultivable bacteriain real soil. Plant, Soil and Environment 55(9), 389–396. https://doi.org/10.17221/136/2009-PSE
Tryfinopoulou, P., Tsakalidou, E., Nychas, G.H.E., 2002. Characterization of Pseudomonas spp. Associated with spoilage of gilt-Head Sea bream stored under various conditions. Appl. Environ. Microbiol. 68, 65–72. https://doi.org/10.1128/AEM.68.1.65-72.2002
Uhlik, O., Strejcek, M., Junkova, P., Sanda, M., Hroudova, M., Vlcek, C., Mackova, M., Macek, T. 2011. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Applied and environmental microbiology 77(19), 6858–6866. https://doi.org/10.1128/AEM.05465-11
van Belkum, A., Welker, M., Erhard, M., Chatellier, S. 2012. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories. Journal of clinical microbiology 50(5), 1513–1517. https://doi.org/10.1128/ jcm.00420-12
Vargha, M., Takats, Z., Konopka, A., Nakatsu, C. H. 2006. Optimization of MALDI-TOF MS for strain-level differentiation of Arthrobacter isolates. Journal of Microbiological Methods 66, 399–409. https://doi.org/10.1016/j.mimet.2006.01.006
Vidali, M. 2001. Bioremediation. an overview. Pure and applied chemistry 73(7), 1163–1172. https://doi.org/10.1351/ pac200173071163
Wang, G., Li, M., Ma, F., Wang, H., Xu, X., Zhou, G. 2017. Physicochemical properties of Pseudomonas fragi isolate response to modified atmosphere packaging. FEMS Microbiol. Lett. 364(11), 1–8. https://doi.org/10.1093/femsle/fnx106
Wieser, A.; Schneider, L.; Jung, J., Schubert, S. 2012. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol 93, 965–974. https://doi.org/10.1007/s00253-011-3783-4
Wirtanen, G., Mattila-Sandholm, T. 1994. Measurement of biofilm of Pediococcus pentosaceus and Pseudomonas fragi on stainless steel surfaces. Colloids Surf. B: Biointerfaces 2, 33–39. https://doi.org/10.1016/0927-7765(94)80015-4
Yassin M.F., Almouqatea S. 2010. Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Int. J. Environ Sci. Tech. 7, 535–544. https://doi.org/10.1007/ BF03326162
Zhang, M., Jiang, S., Tanuwidjaja, D., Voutchkov, N., Hoek, E.M.V., Cai, B., 2011. Composition and variability of biofouling organisms in seawater reverse osmosis desalination plants. Appl. Environ. Microbiol. 77, 4390–4398. https://doi.org/10.1128/AEM.00122-11