The Feasibility of Cooperation to Comply with Land Use Change Obligations in the Marosszög Area of South Hungary

Main Article Content

Gábor Ungvári
Zsolt Jolánkai
András Kis
Zsolt Kozma

Abstract

In many years excess water inundations generate a major obstacle to farming in the lowland part of Hungary, including the Marosszög area. Diverting water to large distances requires an infrastructure that is costly to develop and maintain. Alternatively, low-lying local land segments could be withdrawn from cultivation and utilized to collect the surplus water. The Ecological Focus Area (EFA) requirement of the EU points to the same direction: it requires that 5% of arable land is converted to other, ecologically more beneficial uses. During the research project it was tested if it is feasible to apply a novel economic policy instrument, an auction to trade land use change obligations, to achieve the EFA requirement in a cost effective way through the cooperation of farmers, while also creating a practical solution to manage the seasonal surplus water cover on land. The research was carried out in an interdisciplinary way: a dynamically coupled fully integrated hydrological model, including surface and subsurface modules, was applied by engineers to better understand the interconnections of land use, local hydrology and the role of the water diversion infrastructure; while a pilot auction exercise was conducted by economists with the participation of farmers to understand if cost reductions can be achieved through cooperation, as opposed to individual fulfilment of EFA obligations. The analysis also revealed which segments of the water diversion network are economic to maintain. It was confirmed that it is possible to improve local water management and satisfy the EFA requirements at a reduced cost if appropriate economic incentives are applied to trigger the cooperation of farmers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ungvári, Gábor, Zsolt Jolánkai, András Kis, and Zsolt Kozma. 2018. “The Feasibility of Cooperation to Comply With Land Use Change Obligations in the Marosszög Area of South Hungary”. Journal of Environmental Geography 11 (3-4):37-47. https://doi.org/10.2478/jengeo-2018-0011.
Section
Articles

References

Benyhe, B., Kiss, T. 2012. Morphometric analysis of agricultural landforms on lowland plough-fields using high resolution digital elevation models. Carp. Journ. of Earth and Env. Sciences 7(3), 71–78.

Christensen J. H. 2005. Prediction of Regional scenarios and Uncertainties for Defining European climate change risks and effects, Final report PRUDENCE EVK2-CT2001-00132, Danish Meteorological Institute, Copenhagen, Denmark.

Daniel, E.B., Camp, J.V., LeBoeuf, E.J., Penrod, J.R., Dobbins, J.P., Abkowitz, M.D., 2011. Watershed Modeling and its Applications: A State-of-the-Art Review. The Open Hydrology Journal 5, 26–50. DOI: 10.2174/187437810110501002610.2174/1874378101105010026

Deák J. Á. 2012. Makó környékének természetföldrajzi-tájökológiai adottságai, a táj változása, jelenlegi élőhelyei. (The natural-geographical, landscape-ecological attributes of the vicinity of Makó, the change of the landscape, current habitats), unpublished manuscript

European Environment Agency (EEA), 2013. CORINE Land Cover. http://www.eea.europa.eu/publications/COR0-landcover

Farkas, Cs., Birkás, M., Várallyay, Gy., 2009. Soil tillage systems to reduce the harmful effect of extreme weather and hydrological situation. Biologia 64(3), 624–628, Section Botany DOI:10.2478/s11756-009-0079-610.2478/s11756-009-0079-6

FÖMI, 2012. Digital Elevation Model (https://www.ftf.bfkh.gov.hu/portal/index.php/termekeink/magassagi-adatok/domborzat) IPCC SRES. 2000 Nakićenović, N., and Swart, R., ed. (book), Special Report on Emissions Scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 0-521-80081-1, 978-052180081-5 (pb: 0-521-80493-0, 978-052180493-6).

Jolánkai, Zs., 2013. Application of the WateRisk integrated hydrological model in a small Hungarian plain land watershed, the Tisza-Marosszög In: Józsa János, Németh Róbert, Lovas Tamás (szerk.) Proceedings of the Second Conference of Junior Researchers in Civil Engineering. Konferencia helye, ideje: Budapest, Magyarország, 2013.06.17-2013.06.18. Budapest: Budapesti Műszaki és Gazdaságtudományi Egyetem, pp. 228–234. (Proceedings of the Second Conference of Junior Researchers in Civil Engineering)

Jolánkai Zs., Kardos M, Koncsos L., Kozma Zs., Muzelák B. 2012. Pilot Area Studies in Hungary with a Novel Integrated Hydrologic Model – WateRisk. International Young Water Professionals Conference, July 10–13. 2012, Budapest.

Jolánkai, Zs., Kardos, M., Koncsos, L., Kozma, Zs., Muzelák, B. 2012. Pilot Area Studies in Hungary with a Novel Integrated Hydrologic Model – WateRisk. Proceedings of the 6th IWA International Conference for Young Water Professionals, Budapest, Hungary, (CD, id: IWA-9840)

Koncsos L. (ed.) 2011. Jövőképtől a vízkészlet kockázatig (From future visions to risks related to water resources), Budapesti Műszaki és Gazdaságtudományi Egyetem, Vízi Közmű és Környezetmérnöki Tanszék (Budapest University of Technology and Economics, Department of Sanitary and Environmental Engineering), Budapest, Hungary. (in Hungarian)

Koncsos L., Jolánkai Zs., Kozma Zs. 2011. Comparison of the 1D hydrodynamic module of the WateRisk integrated water resources management model-system with the HEC-RAS model. Hydrologic Bulletin (Official Journal of the Hungarian Hydrologic Association) 91(4), 50–56. (in Hungarian)

Kozma Zs., Derts Zs., Fonyó Gy., Jolánkai Zs., Kardos M., Koncsos L., Muzelák B., Parditka G., Liska B. 2012. Overview of risk based water resources scenario analysis – the WateRisk decision support system. International Young Water Professionals Conference, July 10–13. 2012, Budapest.

Kozma Zs., Koncsos L. 2011. Methodological Overview of a Coupled Water Resources Management Model System. In: Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. B. H. V. Topping, Y. Tsompanakis (eds.) Civil-Comp Press, Stirlingshire, UK, Paper 157. doi:10.4203/ccp.96.157.10.4203/ccp.96.157

Kozma, Zs., Ács, T., Koncsos, L. 2014. Unsaturated zone modelling – The role of soil database classification, In: C A Brebbia, H Bjornlund (ed.) Sustainable Irrigation and Drainage V. 280 p. Southampton: Witpress, 2014. pp. 197-210. WIT Transactions on Ecology and the Environment; 185. ISBN:978-1-84564-788-9

Kozma, Zs., Koncsos, L., Jolánkai, Zs., Kardos, M., Koncsos, T., Muzelák, B., Parditka, G., Liska, B., Derts, Zs., 2012. Overview of risk based water resources scenario analysis – the WateRisk decision support system. Proceedings of the 6th IWA International Conference for Young Water Professionals, Budapest, Hungary, (CD id: IWA-9847)

Maziotis, A., L. Carrera, F. Farinosi, J. Mysiak. 2012. Output no. 7. in EPI-WATER WP4: Policy Relevance of the EPIs from an European perspective.

Millennium Ecosystem Assessment (MEA) 2005. Ecosystems and Human Well-being: Synthesis, Island Press, Washington DC. Available at: http://www.maweb.org/en/Synthesis.aspx

Molnár, Zs., Deák, J. Á. 2013. ‘A makói mintaterület természetföldrajzi és tájtörténeti értékelése.’ (The geography and landscape history of the Makó pilot area.), Background document for EPI-Water.

Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50, 885–900. DOI: 10.13031/2013.2315310.13031/2013.23153

Müller, Klaus, H-P. Weikard. 2002. ‚Auction Mechanisms for Soil and Habitat Protection Programmes.’ in Hagedorn, Konrad (ed.), Environmental Co-operation and Institutional Change., Cheltenham: Edward Elgar, 202–213.

Mysiak, J., H. J. Henrikson, C. Sullivan, J. Bromley and C. Pahl-Wostl. 2010. The Adaptive Water Resource Management Handbook. Earthscan, UK and USA.

OMSZ (National Weathr Service): Data series on climate, Link: http://owww.met.hu/eghajlat/eghajlati_adatsorok/sz/Navig/204e.htm

OVF Országos Vízügyi Főigazgatóság. 2016. A Duna vízgyűjtő magyarországi része, Vízgyűjtő-gazdálkodási terv 2015. [The Hungarian part of the Danube river basin, Water management plan 2015]

Pásztor, L., Kőrösparti, J., Bozán, Cs., Laborczi, A., Takács, K. 2015. Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. Journal of Maps 11(4), 636–644. DOI: 10.1080/17445647.2014.95464710.1080/17445647.2014.954647

Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Bakacsi, Z., Szabó, J., Illés, G. 2018. DOSoReMI as the national implementation of GlobalSoilMap for the territory of Hungary, in Proceedings of the Global Soil Map 2017 Conference, July 4-6, 2017, edited by Arrouay D., Savin I., Leenaars J., McBratney A. B., CRC Press, Moscow, Russia, pp. 17–22.

Pinke, Zs., Kiss, M., Lövei, G. L. 2018. Developing an integrated land use planning system on reclaimed wetlands of the Hungarian Plain using economic valuation of ecosystem services, Ecosystem Services 30(B), 299–308. DOI: 10.1016/j.ecoser.2017.09.00710.1016/j.ecoser.2017.09.007

Spanoudaki, K., Stamou, A. I., Nanou-Giannarou, A. 2009. Development and verification of a 3-D integrated surface water-groundwater model, Journal of Hydrology 375(3-4), 410–427. DOI: 10.1016/j.jhydrol.2009.06.04110.1016/j.jhydrol.2009.06.041

Ungvári, G and Kis, A. (lead authors). 2013. EPI-WATER Deliverable No. D.4-2 Report of the case study Task 4.1: WP4 Ex-Ante Case Studies. Floods and Water Logging in the Tisza River Basin (Hungary).

Szatmári, J., van Leeuwen, B (ed.), 203. Inland Excess Water - Belvíz - Suvišne Unutrašnje Vode Szeged; Újvidék: Szegedi Tudományegyetem; Újvidéki Egyetem, 154 p.

van Leeuwen, B., Právetz, T., Liptay, Z. Á., Tobak, Z. 2016. Physically based hydrological modelling of inland excess water. Carpathian Journal of Earth and Environmental Sciences 11(2), 497–510.

van Leeuwen, B., Tobak, Z., Szatmári, J. 2008. Development of an integrated ANN-GIS framework for inland excess water monitoring. Journal of Env. Geogr. 1(3-4), 1–6. DOI: 10.2478/v10326-012-0001-510.2478/v10326-012-0001-5

Viaggi, D. and M. Vollaro. 2012. Output no. 5. in EPI-WATER WP 4.1: Input on agricultural themes: Environmental Performance of the CAP schemes and the new conditions of the CAP schemes that will operate in the next EU budget.

VITUKI, 1972. Éves beszámoló. A Duna-medence magyarországi részének vízmérlege.Ismerteti: Kardos Mária. (Annual report: The water budget of the Hungarian part of the Danube basin, reported by Maria Kardos)

VTOSZ Vízgazdálkodási Társulatok Országos Szövetsége, 2011. Tájékoztató a területi vízgazdálkodási társulatok feladatairól és lehetőségeiről napjainkban. Tájékoztató az Országgyűlés Fenntartható Fejlődés Bizottságának 2011. február 3-i ülésére. [Information on the tasks and options of the regional water management associations. Prepared for the 3 February 2011 gathering of the National Council for Sustainable Development of the Parliament]

Weikard, H-P., Zetland, D., Ayres, A., and Lago, M. August, 2012. Output no. 6. in EPI-WATER WP 4.1 Auction mechanisms for water management