Centurial Changes in the Depth Conditions of a Regulated River Case Study of the Lower Tisza River, Hungary

Main Article Content

Gabriel Jonathan Amissah
Timea Kiss
Károly Fiala

Abstract

The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO) of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y), except from 1961-1976 which was characterized by aggradation (2 cm/y). The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y). The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.

Downloads

Download data is not yet available.

Article Details

How to Cite
Amissah, Gabriel Jonathan, Timea Kiss, and Károly Fiala. 2017. “Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary”. Journal of Environmental Geography 10 (1-2):41-51. https://doi.org/10.1515/jengeo-2017-0005.
Section
Articles

References

Anderson, R.S., Anderson, S.P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press, UK, 340 p.

Antonelli, C., Provansal, M., Vella, C. 2004. Recent morphological channel changes in a deltaic environment. The case of the Rhone River, France. Geomorphology 57, 385-402. DOI: 10.1016/s0169-555x(03)00167-3

Bezdan, M. 2010. Characteristics of the flow regime of the regulated Tisza River reach downstream of Tiszafüred. Journal of Env. Geogr. 3 (1-4), 25 -30.

Bravard, J.P., Landon, N., Peiry, J.L., Piégay, H. 1999. Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31, 291 -311. DOI: 10.1016/s0169-555x(99)00091-4

Brierley, G.J., Fryirs, K.A. 2005. Geomorphology and River Management: Applications of the river styles framework. Blackwell Publishing, UK, 398 p.

Chang, H.H. 2008. River Morphology and River Channel Changes. Transactions of Tianjin Universities 14 (4), 254-262. DOI: 10.1007/s12209-008-0045-3

Church, M. 2006. Bed Material Transport and the Morphology of Alluvial River Channels. Annual Review of Earth and Planetary Science 34, 325-354. DOI: 10.1146/annurev.earth.33.092203.122721

Dey, S. 2014: Fluvial Hydrodynamics. GeoPlanet Series, Springer-Verlag, Berlin, 670 p.

Dunka, S., Fejér, L., Vágás, I. 1996. A verítékes honfoglalás: A Tisza szabályozás története. Vízügyi Múzeum és Levéltár, Budapest, 210 p. (in Hungarian)

Ferguson, R. 2010. Time to abandon the Manning equation? Earth Surf. Proc. Landf. 38, 1873-1876. DOI: 10.1002/esp.2091

Fryirs, K.A., Brierley, G.J. 2001. Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic recovery. Geomorphology 38, 237-265. DOI_ 10.1016/s0169-555x(00)00093-3

Fryirs, K.A., Brierley, G.J., Preston, N.J., Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena 70, 49-67. DOI: 10.1016/j.catena. 2006.07.007

Fryirs, K.A., Brierley, G.J., Preston, N.J., Spencer, J. 2008. Catchmentscale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84 (3), 297-316. DOI: 10.1016/j.geomorph.2006.01.044

Harmar, O.P., Clifford, N.J., Thorne, C. R., Biedenharn, D. S. 2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research Applications 21 (10), 1107-1131. DOI: 10.1002/rra.887

Hooke, J.M. 1995. River channel adjustment to meander cutoffs on River Bollin and River Dane, Northwest England. Geomorphology 14, 235-253. DOI: 10.1016/0169-555x(95)00110-q

Huang, M.W., Liao, J.J., Pan, Y.W., Chen, M.H. 2014. Rapid channelization aqnd incision into soft bedrock induced by human activity: Implication from the Bachang River in Taiwan. Engineering Geology 177, 10-24. DOI: 10.1016/j.enggeo.2014.05.002

International Commission for Protection of the Danube River (ICPDR). 2008. Analysis of the Tisza River Catchment 2007: Initial step towards the Tisza River Catchment Management Plan-2009. Vienna, Austria.

Kasse, C., Bohnake, S. J. P., Vandenberghe, J., Gabris, G. 2010. Fluvial style changes during the las glacial0interglacial transition in the middle Tisza Valley (Hungary). Proceedings of the Geologists Association 121, 180-194. DOI: 10.1016/j.pgeola.2010.02.005

Kiss, T. 2014. Fluviális Folyamatok antropogén hatásra megváltozó dinamikája: Egyensúly és érzékenység vizsgáta folyóvizi környezetben. Akadémiai doktori értekezés. Szeged, 165 p. (In Hungarian)

Kiss, T., Balogh, M. 2015. Characteristics of point-bar development under the influence of a dam: Case study of the Dráva River at Sigetec, Croatia. Journal of Env. Geogr. 8 (1-2), 23-30. DOI: 10.1515/jengeo-2015-0003

Kiss T., Fiala, K., Sipos, G. 2008. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98, 96-110. DOI: 10.1016/j.geomorph.2007.02.027

Kondolf, G.M., Piégay, H., Landon, N. 2002. Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments. Geomorphology 45, 35-51. DOI: 10.1016/s0169-555x(01)00188-x

Kroes, D.E., Kraemer, T.F. 2013. Human-induced stream channel abandonment Capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201, 148-156. DOI: 10.1016/j.geomorph.2013.06.016

Laczay, I.A. 1982. A folyószabályozás tervezésének morfológiai alapjai. Vízügyi Közlemények 64 (2), 235-256. (in Hungarian)

Landon, N., Piégay, H., Bravard, J.P. 1998. The Drȏme River incision (France): from assessment to management. Landscape and Urban Planning 43 (1-3), 119-131. DOI: 10.1016/s0169-2046(98)00046-2

Lászlóffy, W. 1982. A Tisza. Akadémiai Kiadó, Budapest. 610 p. (in Hungarian)

Latapie, A., Camenen, B., Rodrigues, S., Paquier, A., Bouchard, J.P., Moatar, F. 2014. Assessing channel response of a long river influenced by human disturbance. Catena 121, 1-12. DOI: 10.1016/j.catena.2014.04.017

Legleiter, C.J. 2014. A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 2. Application to restored and natural channels. Geomorphology 205, 85-101. DOI: 10.1016/j.geomorph.2012.01.017

Liébault F., Piégay H. 2001. Assessment of channel changes due to longterm bedload supply decrease, Roubion River, France. Geomorphology 36, 167-186. DOI: 10.1016/s0169-555x(00)00044-1

Liébault, F., Piégay, H. 2002. Causes of 20th century channel narrowing in Mountain and Piedmont Rivers of southeastern France. Earth Surface Proc. and Landforms 27, 425-444. DOI: 10.1002/esp.328

Liébault, F., Gomez, B., Page, M., Marden, M., Peacock, D., Richard, D., Trotter, C.M. 2005. Land-use change, sediment production and channel response in upland regions. River Research and Applications 21, 739-756. DOI: 10.1002/rra.880

Lóczy, D., Kis, É., Schweitzer, F. 2009. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 113, 200-209. DOI: 10.1016/j.geomorph.2009.03.013

Mezősi, G. 2009. The Physical Geography of Hungary. Springer, Switzerland, 334 p.

Morais, E.S., Rocha, P.C., Hooke, J. 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 273, 348-360. DOI: 10.1016/j.geomorph.2016.07.026

Nagy, J., Kiss, T. 2016. Hydrological and morphological changes of the Lower Danube near Mohács, Hungary. Journal of Env. Geogr. 9 (1-2), 1-6.DOI: 10.1515/jengeo-2016-0001

Osei, N.A., Harvey, G.L., Gurnell, A.M. 2015. The early impact of large wood introduction on the morphology and sediment characteristics of a lowland river. Limnologica 54, 33-43. DOI: 10.1016/j.limno.2015.08.001

Pinke, Z. 2014. Modernization and Decline: an eco-historical perspective on regulation of the Tisza Valley, Hungary. Journal of Historical Geography 45, 92-105. DOI: 10.1016/j.jhg.2014.02.001

Pinter, A, Heine, RA. 2005. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. Journal of Hydrology 302, 70-91. DOI: 10.1016/j.jhydrol.2004.06.039

Powell, D.M. 2014. Flow resistance in gravel-bed Rivers: Progress in research. Earth Science Reviews 136, 301-338. DOI: 10.1016/j.earscirev.2014.06.001

Rinaldi, M. 2003. Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surface Processes and Landforms 28, 587-608. DOI: 10.1002/esp.464

Rinaldi, M., Simon, A. 1998. Bed-level adjustments in the Arno River, Central Italy. Geomorphology 22, 57-71. DOI: 10.1016/s0169-555x(97)00054-8

Rinaldi, M., Wyżga, B., Surian, N. 2005. Sediment mining in alluvial rivers: physical effects and management perspectives. River Research and Application 21, 805-828. DOI: 10.1002/rra.884

Schweitzer, F. 2009. Strategy or disaster: flood prevention related issues and actions in the Tisza River Catchment. Hung. Geogr. Bull. 58, 3-17. DOI: 10.1007/978-94-011-4140-6_9

Simon, A, Rinaldi, M. 2006. Disturbance, stream incision, and channel evolution. The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 79 (3-4), 361-383. DOI: 10.1016/j.geomorph.2006.06.037

Sipos, G., Kiss, T., Fiala, K. 2007. Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geografia Fiscia E Dinamica Quaternia 30 (2), 239-247. DOI: 10.1016/j.geomorph.2007.02.027

Smith, L.M., Winkley, B.R. 1996. The response of the Lower Mississippi River to river engineering. Engineering Geology 45, 433-455. DOI: 10.1016/s0013-7952(96)00025-7

Surian, A. 1999. Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes Landforms 24, 1135-1151. DOI: 10.1002/(sici)1096-9837(199911)24:12<1135::aidesp40>3.3.co;2-6

Surian, N., Rinaldi, M. 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50, 307-326. DOI: 10.1016/s0169-555x(02)00219-2

Szlávik, L. 2000. Az Alföld árvízi veszélyeztetettsége. In: Pálfai, J (Ed.): A víz szerepe és jelentősége. Nagyalföld Alapítvány, Békéscsaba, 64-84 (in Hungarian).

Vágás, I. 1982. A Tisza árvizei. VÍZDOK, Budapest, 283 p. (in Hungarian)

Van der Berg, J.H. 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259-279. DOI: 10.1016/01695-55x9(50)0014v-

Wyżga, B. 2007. 20 A review on channel incision in Polish Carpathian Rivers during the 20th century. Developments in Earth Surface Processes 11, 525-553.DOI: 10.1016/s0928-2025(07)11142-1

Xu, J. 2002. River sedimentation and channel adjustment of the lower Yellow River as influenced by low discharges and seasonal channel dry-ups. Geomorphology 43, 151-164. DOI: 10.1016/s0169-555x(01)00131-3

Yang, S.L., Milliman, J.D., Xu, K.H., Deng, B., Zhang, X.Y., Luo, X.X. 2014. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews 138, 469-486. DOI: 10.1016/j.earscirev.2014.07.006

Yates, R., Waldron, B., van Arsdale, R. 2003. Urban effects on flood plain natural hazards: Wolf River, Tennessee, USA. Engineering Geology 70, 1-15. DOI: 10.1016/s0013-7952(03)00088-7