Woody Plants Interaction with Aerosol Fine Particulate Matters and Copper in Budapest
Main Article Content
Abstract
Ambient particulate matter pollution is the primary concern as it has a significant impact on human health and the majority of the world's population lives in urban areas. Heavy metals are the most concerning component of particulate matter, and Cu is a highly traffic-related emission element whose overabundance results in toxic effects. Woody plants, on the other hand, contribute to the removal of airborne pollution in urban areas. Our aims are (1) to compare urban woody plants abilities to capture ambient fine particulate matter on leaf surface; and (2) to access the Cu concentration loads on their leaf surfaces. Consequently, our results will provide scientific knowledge for future urban planning concerning air pollution remediation. We investigated the relationship between woody plants and heavy metal pollution in Budapest. Four woody plant species were sampled at different traffic densities. Their Cu contents in the leaf and branch were measured, our results show that Tilia tomentosa and Acer platanoides are better options for ambient Cu accumulation than Fraxinus excelsior and Aesculus hisppocastanus in urban environments. At different traffic densities and sampling times, however, Cu accumulation did not vary across species. This is because, through translocation, woody plants absorb Cu not only from the air but also from the soil. Furthermore, it is also because of the long-distance transportation and long-term suspension of fine particulate matter. From the obtained results, we can conclude that woody plants are important phytoremediation elements in the urban area of Budapest. Planting T. tomentosa and A. platanoides in urban areas of central Europe will be promising for ambient heavy metal pollution phytoremediation. But environmental conditions differ from one place to another. Therefore, a comprehensive study is required in order to apply the results to different locations.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
References
Abhijith, K.V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., Pulvirenti, B. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment 162, 71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014
Alahabadi, A., Ehrampoush, M.H., Miri, M., Ebrahimi Aval, H., Yousefzadeh, S., Ghaffari, H.R., Ahmadi, E., Talebi, P., Abaszadeh Fathabadi, Z., Babai, F., Nikoonahad, A., Sharafi, K., Hosseini-Bandegharaei, A. 2017. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 172, 459–467. https://doi.org/10.1016/j.chemosphere.2017.01.045
Aničić, M., Spasić, T., Tomašević, M., Rajšić, S., Tasić, M. 2011. Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators 11, 824–830. https://doi.org/10.1016/j.ecolind.2010.10.009
Aricak, B., Cetin, M., Erdem, R., Sevik, H., Cometen, H. 2020. The usability of scotch pine (Pinus sylvestris) as a biomonitor for traffic-originated heavy metal concentrations in Turkey. Polish Journal of Environmental Studies 29, 1051–1057. https://doi.org/10.15244/pjoes/109244
Chen, L., Liu, C., Zhang, L., Zou, R., Zhang, Z. 2017. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Scientific Reports 7(1), p. 3206. https://doi.org/10.1038/s41598-017-03360-1.
Choi, Y.-K., Song, H.-J., Jo, J.-W., Bang, S.-W., Park, B.-H., Kim, H.-H., Kim, K.-J., Jeong, N.-R., Kim, J.-H., Kim, H.-J. 2021. Morphological and chemical evaluations of leaf surface on particulate matter2.5 (PM2.5) removal in a botanical plant-based biofilter system. Plants 10, 2761. https://doi.org/10.3390/plants10122761
Csorba, S., Üveges, J., Makó, A. 2014. Relationship between soil properties and potentially toxic element content based on the dataset of the Soil Information and Monitoring System in Hungary. Central European Geology 57, 253–263. https://doi.org/10.1556/CEuGeol.57.2014.3.2
Drava, G., Anselmo, M., Brignole, D., Giordani, P., Minganti, V. 2017. Branch bark of holm oak (Quercus ilex L.) for reconstructing the temporal variations of atmospheric deposition of hexavalent chromium. Chemosphere 170, 141–145. https://doi.org/10.1016/j.chemosphere.2016.12.012
Dzierżanowski, K., Popek, R., Gawrońska, H., Sæbø, A., Gawroński, S.W. 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13, 1037–1046. https://doi.org/10.1080/15226514.2011.552929
El-Khatib, A.A., Barakat, N.A., Youssef, N.A., Samir, N.A. 2020. Bioaccumulation of heavy metals air pollutants by urban trees. International Journal of Phytoremediation 22, 210–222. https://doi.org/10.1080/15226514.2019.1652883
Faraji Ghasemi, F., Dobaradaran, S., Saeedi, R., Nabipour, I., Nazmara, S., Ranjbar Vakil Abadi, D., Arfaeinia, H., Ramavandi, B., Spitz, J., Mohammadi, M.J., Keshtkar, M. 2020. Levels and ecological and health risk assessment of PM2.5-bound heavy metals in the northern part of the Persian Gulf. Environmental Science Pollution Research 27, 5305–5313. https://doi.org/10.1007/s11356-019-07272-7
Ferenczi, Z., Bozó, L. 2017. Effect of the long-range transport on the air quality of greater Budapest area. International Journal of Environmental and Pollution 62(2–4), 407–416. https://doi.org/10.1504/IJEP.2017.089428
Ferenczi, Z., Imre, K., Lakatos, M., Molnár, Á., Bozó, L., Homolya, E., Gelencsér, A. 2021. Long-term Characterization of Urban PM10 in Hungary. Aerosol Air Quality Research 21, 210048. https://doi.org/10.4209/aaqr.210048
Gajbhiye, T., Pandey, S.K., Lee, S.S., Kim, K.-H. 2019 Size fractionated phytomonitoring of airborne particulate matter (PM) and speciation of PM bound toxic metals pollution through Calotropis procera in an urban environment. Ecological Indicators 104, 32–40. https://doi.org/10.1016/j.ecolind.2019.04.072
Hofman, J., Bartholomeus H., Janssen S., Calders, K., Wuyts K., Wittenberghe, S.V., Samson, R. 2016. Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): A model and experimental approach. Urban Forestry & Urban Greening 20, 265–276. https://doi.org/10.1016/j.ufug.2016.09.013
Hrotkó, K., Gyeviki, M., Sütöriné, D.M., Magyar, L., Mészáros, R., Honfi, P., Kardos, L. 2021. Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environmental Geochemistry & Health 43, 1927–1940. https://doi.org/10.1007/s10653-020-00769-y
IBM Corp. Released 2020. IBM SPSS Statistics for Window/Macintosh, Version 27.0. Armonk, NY: IBM Corp
Jeanjean, A.P.R., Monks, P.S., Leigh, R.J. 2016. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmospheric Environment 147, 1–10. https://doi.org/10.1016/j.atmosenv.2016.09.033
Jin, E.J., Yoon, J.H., Bae, E.J., Jeong, B.R., Yong, S.H., Choi, M.S. 2021. Particulate matter removal ability of ten evergreen trees planted in Korea urban greening. Forests 12, 438. https://doi.org/10.3390/f12040438
Kiss, T., Fekete, I. and Tápai, I. 2019. Environmental Status of a City Based on Heavy Metal Content of the Tree-Rings of Urban Trees: Case Study at Szeged, Hungary. Journal of Environmental Geography 12(1–2), 13–22. https://doi.org/10.2478/jengeo-2019-0002
Li, C., Du, D., Gan, Y., Ji, S., Wang, L., Chang, M., Liu, J. 2022. Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 287, 132341. https://doi.org/10.1016/j.chemosphere.2021.132341
Mori, J., Sæbø, A., Hanslin, H.M., Teani, A., Ferrini, F., Fini, A., Burchi, G. 2015. Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban Forestry & Urban Greening 14, 264–273. https://doi.org/10.1016/j.ufug.2015.02.008
Nadgórska–Socha, A., Kandziora-Ciupa, M., Trzęsicki, M., Barczyk, G. 2017. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere 183, 471–482. https://doi.org/10.1016/j.chemosphere.2017.05.128
Norouzi, S., Khademi, H., Faz Cano, A., Acosta, J.A. 2015. Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecological Indicators 57, 64–73. https://doi.org/10.1016/j.ecolind.2015.04.011
Nowak, D.J., Crane, D.E., Stevens, J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4, 115–123. https://doi.org/10.1016/j.ufug.2006.01.007
Perrone, M.G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., Osán, J., Bešlić, I., Kertész, Z., Pernigotti, D., Eleftheriadis, K., Belis, C.A. 2018. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Science of the Total Environment 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092
Ramesh, S., Gopalsamy, S. 2021. Analysis of deposition of heavy metal dust on the leaves of few selected tree species in Kanchipuram town, Tamil Nadu, India. Journal of Applied and Natural Science 13, 1011–1019. https://doi.org/10.31018/jans.v13i3.2739
Schmidt, G., Sütöri-Diószegi, M. 2013. Preservation and restoration of living plant collections on the example of the Buda Arboretum of Corvinus University, Budapest. Folia Oecologica 40(2). ISSN 1336-5266
Serbula, S.M., Kalinovic, T.S., Ilic, A.A., Kalinovic, J.V., Steharnik, M.M. 2013. Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol Air Quality Research 13, 563–573. https://doi.org/10.4209/aaqr.2012.06.0153
Sevik, H., Cetin, M., Ozel, H.B., Pinar, B. 2019. Determining toxic metal concentration changes in landscaping plants based on some factors. Air Quality, Atmosphere & Health 12, 983–991. https://doi.org/10.1007/s11869-019-00717-5
Soba, D., Gámez, A.L., Úriz, N., Ruiz de Larrinaga, L., Gonzalez-Murua, C., Becerril, J.M., Esteban, R., Serret, D., Araus, J.L., Aranjuelo, I. 2021. Foliar heavy metals and stable isotope (δ13C, δ15N) profiles as reliable urban pollution biomonitoring tools. Urban Forestry & Urban Greening 57, 126918. https://doi.org/10.1016/j.ufug.2020.126918
Świetlik, R., Strzelecka, M., Trojanowska, M. 2013. Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environmental Studies 22(2), 561-567.
Szaller, V., Szabó, V., Diószegi, M.S., Magyar, L., Hrotkó, K. 2014. Urban alley trees in Budapest, in: Raček, M. (ed.) Plants in Urban Areas and Landscape. Slovak University of Agriculture in Nitra, pp. 28–31. https://doi.org/10.15414/2014.9788055212623.28-31
Turan, O., Ozdemir, H., Demir, G. 2020. Deposition of heavy metals on coniferous tree leaves and soils near heavy urban traffic. Frontiers in Life Sciences and Related Technologies 1(1) 35–41. Online available at https://dergipark.org.tr/tr/download/article-file/1242667
Ulmer, J.M., Wolf, K.L., Backman, D.R., Tretheway, R.L., Blain, C.J., O’Neil-Dunne, J.P., Frank, L.D. 2016. Multiple health benefits of urban tree canopy: The mounting evidence for a green prescription. Health & Place 42, 54–62. https://doi.org/10.1016/j.healthplace.2016.08.011
WHO 2021. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization- Online available at https://apps.who.int/iris/handle/10665/345329
www.met.hu https://www.met.hu/eghajlat/magyarorszag_eghajlata/ eghajlati_adatsorok/Budapest/adatok/eves_adatok/
/2009. (IV.14.) KvVM- EüM-FVM együttes rendelet - a földtani közeg és a felszín alatti víz szennyezéssel szembeni védelméhez szükséges határértékekről és a szennyezések méréséről: 2015.IV.1.