Carbon Isotope Investigation of Freshwater Tufa Precipitation in Karst Streams of Bükk Mountains (Hungary)
Main Article Content
Abstract
Recent freshwater tufa precipitation and its parent water were investigated at Szalajka valley, Sebesvíz and Dobrica Spring (Bükk Mts., Hungary). The aim of the study is to analyse the carbon isotope dynamics of freshwater tufa precipitated in karstic streams between the spring water and the first significant tufa barrage using field measurements, water chemistry, and carbon isotope analysis. A further aim was to examine the fossil tufa precipitations in recently active areas and their neighbourhood to determine their age using the 14C method. Based on the 3H content the water samples are relatively young (<10 y). To calibrate the calendar age of older tufas, dead carbon proportion (dcp) were determined in the recently formed freshwater tufas. The lowest dcp of the recent freshwater tufas was estimated at Sebesvíz (9.6±1.3%), the highest at Szalajka (16.4±2.4%) and a moderate value at Dobrica Spring (13.8±2.2%). Due to the rapid decrease in atmospheric 14C level we have to compensate the atmospheric 14C drop between the water infiltration time and the deposition time of fresh carbonates to compensate the bomb-effect. The oldest fossil tufa age (BC 6421-6096) was found at Sebesvíz located around 20 metres away from the riverbed, while the youngest fossil tufa ages (a few years/decades old) were found in the recently active area at all sites.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
Funding data
-
Emberi Eroforrások Minisztériuma
Grant numbers NTP-NFTÖ-18-B-0231 -
European Regional Development Fund
Grant numbers GINOP-2.3.2-15-2016-00009 -
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Grant numbers 10.13039/501100011019
References
Andrews J.E. 2006. Paleoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Elsevier, Earth–Science Reviews 75, 85–104. https://doi.org/10.1016/ j.earscirev.2005.08.002
Andrews J.E., Brasier A.T. 2005. Seasonal record of climatic change in annually laminated tufa: short review and future prospects. Journal of Quaternary Science 20 (5). 411–421. https://doi.org/10.1002/jqs.942
Aujeszky G., Karácsonyi S., Scheuer Gy. 1974. Karst hydrogeological conditions of SW Bükk Mts. Hidrológiai Közlöny 54(10), 465–476. (In Hungarian)
Aujeszky G., Scheuer Gy. 1979. Hydrogeological experiences of the catchment of springs in W- Bükk Mts. Hidrológiai Közlöny 59(2), 63–77. (In Hungarian)
Baráz Cs. [ed.] 2002. The Bükk National Park: Mountains, forest, people. Bükki Nemzeti Park Igazgatóság. 1–621. (In Hungarian)
Bethke, C.M., Johnson, T.M. 2008. Groundwater Age and Groundwater Age Dating. Annu. Rev. Earth Planet. Sci. 36, 121–152. https://doi.org/10.1146/annurev.earth.36.031207.124210
Bódai B., Czuppon Gy., Fórizs I., Kele S. 2022. Seasonal study of calcite-water oxygen isotope fractionation at recent freshwater tufa sites in Hungary. Geologica Carpathica 73(5), 485–496. https://doi.org/10.31577/GeolCarp.73.5.6
Capezzuoli E., Gandin A., Pedley M. 2014. Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: The state of the art. Sedimentology 61, 1–21. https://doi.org/10.1111/ sed.12075
Craig H. 1965. The measurement of oxygen isotope paleotemperatures. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, Tongiorgi E (ed.). Consiglio Nazionale delle Richerche, Laboratorio de Geologia Nucleare: Pisa; pp. 161–182.
Demény, A., Kern, Z., Németh, A., Frisia, S., Hatvani, I.G., Czuppon, Gy., Leél-Őssy, Sz., Molnár, M., Óvári, M., Surányi, G., Gilli, A., Wu, Ch., Shen, Ch. 2019. North Atlantic influences on climate conditions in East-Central Europe in the late Holocene reflected by flowstone compositions. Quaternary International 512, 99–112. https://doi.org/10.1016/ j.quaint.2019.02.014
Forbes, M., Vogwill, R., Onton, K. 2010. A characterisation of the coastal tufa deposits of south-west Western Australia. Sed. Geol. 232, 52–65. https://doi.org/10.1016/ j.sedgeo.2010.09.009
Genty D., Massault M. 1999. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France - Modelling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta 63(10), 1537–1548. https://doi.org/10.1016/S0016-7037(99)00122-2
Genty D., Massault M., Gilmour M., Baker A., Verheyden S., Kepens E. 1999. Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/TH ages on two Holocene stalagmites. Radicarbon 41(3), 251–270. https://doi.org/10.1017/S003382220005712X
Genty D. Vokal B. Obelic, M., Massault, M. 1998. Bomb 14C time history recorded in two modern stalagmites - importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160, 795–809. https://doi.org/10.1016/S0012-821X(98)00128-9
Hevesi A., 1972. Freshwater carbonate formation in the Bükk Mts. Földrajzi Értesítő 21(2-3), 187–205. (In Hungarian)
Hori M., Hoshino K., Okumura K., Kano A. 2008. Seasonal patterns of carbon chemistry and isotopes in tufa depositing groundwaters of southwestern Japan. Geochimica et Cosmochimica Acta 72, 480–492. https://doi.org/10.1016/ j.gca.2007.10.025
Horvatincic N., Calic R., Geyh M.A. 2000. Interglacial Growth of Tufa in Croatia. Quaternary Research 53, 185–195. https://doi.org/10.1006/qres.1999.2094
Horvatincic N., Bronic I.K., Obelic B. 2003. Differences in the 14C age, 13C and 18O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeography, Palaeoclimatology, Palaeoecology 193. 139–157. https://doi.org/10.1016/S0031-0182(03) 00224-4
Horvatincic, N., Brianso, J.L., Obelic, B., Baresic, J., Krajcar Bronic, I. 2006. Study of pollution of the Plitvice Lakes by water and sediment analyses. Water Air and Soil Pollution. Focus 6, 475–485. https://doi.org/10.1007/s11267-006-9031-8
Hua Q., Turnbull C.J., Santos M.G., Rakowski A.Z., Ancapichún S., De Pol-Holz R., Hammer S., Lehman J.S., Levin I., Miller B.J., Palmer J.G., Turney C.S.M. 2021. Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64 723–475. https://doi.org/10.1017/RDC.2021.95
Jenkins W.J., Smethie, W.M. 1996. Transient tracers track ocean climate signals, Oceanus 39, 29–32. Online available at https://www.whoi.edu/cms/files/dfino/2005/4/v39n2-jenkins_2166.pdf
Kano A., Kambayashi T., Fujii H., Matsuoka J., Sakuma K., Ihara T. 1999. Seasonal variation in water chemistry and hydrological conditions of tufa deposition of Shirokawa, Ehime Prefecture, southwestern Japan. Journal of the Geological Society of Japan 105(4), 289–304. https://doi.org/10.1016/ j.chemgeo.2006.02.011
Kano A., Matsuoka J., Kojo T., Fujii H. 2003. Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 191, 243–262. https://doi.org/10.1016/0031-0182(02)00717-4
Kawai T., Kano A., Matsuoka J., Ihara T. 2006. Seasonal variation in water chemistry and depositional processes in a tufa-bearing stream in SW-Japan, based on 5 years of monthly observations. Chemical Geology 232, 33–53. https://doi.org/10.1016/j.chemgeo.2006.02.011
Kele S., Breitenbach S.F.M., Capezzuoli E., Meckler A.N., Ziegler M., Millan I. M., Kluge T., Deák J., Hanselmann K., John C.M., Yan H., Liu Z., Bernasconi S.M. 2015. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95 oC temperature range. Geochimica et Cosmochimica Acta 168, 172–192. https://doi.org/10.1016/j.gca.2015.06.032
Kim S.T., O’Neil J.R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461–3475. https://doi.org/10.1016/ S0016-7037(97)00169-5
Libby W.F. 1955. Radiocarbon Dating, 2nd edition. Chicago: University of Chicago Press. 184. p.
Liu, Z., Sun, H., Li, H., Wan, N. 2011. 13C, 18O and deposition rate of tufa in Xiangshui River, SW China: implications for land-cover change caused by climate and human impact during the late Holocene. In: Human Interactions with the Geosphere: The Geoarchaeological Perspective (Ed. L. Wilson), Geol. Soc. London Spec. Publ. 352, 85–96. https://doi.org/10.1144/ SP352.7
Lowe M.J.C., Walker J.J. 2015. Reconstructing Quaternary Environments (Third edition). Routledge (Taylor & Francis Group), London & New York. 270–284.
Luzón A., Gauthier A., Pérez A., Pueyo-Anchuela O., Mayajo M.J., Munoz A. 2017. Late-Pleistocene-Holocene palaeoenvironmental evolution of the Anamaza River valley (Iberian Range, NE Spain): Multidisciplinary approach on the study of carbonate fluvial system. Quaternary Internation 437, 51–70. https://doi.org/10.1016/j.quaint.2016.06.004
Major I., Haszpra L., Rinyu L., Futó I., Bihari Á., Hammer S., Jull A J T., Molnár M. 2018. Temporal Variation of Atmospheric Fossil and Modern CO2 Excess at a Central European Rural Tower Station between 2008 and 2014. Radiocarbon 60(5) 1285–1299. https://doi.org/10.1017/RDC.2018.79
Matsuoka J., Kano A., Oba T., Watanabe T., Sakai S., Seto K. 2001. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth and Planetary Science Letters 192, 31–44. https://doi.org/10.1016/S0012-821X(01)00435-6
Molnár M., Dezső Z., Futó I., Rinyu L., Svingor É. 2006a. Measurement and interpretation of 14C content in young karstic rocks. Karsztfejlődés Konferencia, Bük. 37–46. (In Hungarian)
Molnár M. 2006b. Carbon and time: radiocarbon dating. Fizikai Szemle. Magyar fizikai folyóirat 181–185. (In Hungarian)
Molnár M., Dezső Z., Futó I., Rinyu L., Svingor É. 2007. Isotopanalytical studies on dripping water from the stalactites of Baradla Cave. Karsztfejlődés, Bük. 267–278. (In Hungarian)
Molnár, M., Janovics, R., Major, I., Orsovszki, J., Gönczi, R., Veres, M., T. Jull, A. J. 2013a. Status Report of the New AMS 14C Sample Preparation Lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3), 665–676. http://doi.org/10.2458/ azu_js_rc.55.16394
Molnár, M., Rinyu, L., Veres, M., Seiler, M., Wacker, L., Synal, H.-A. 2013b. EnvironMICADAS: A mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55(2–3), 338–344. http://doi.org/10.1017/ S0033822200057453
Országos Meteorológiai Szolgálat (OMSZ) 2001. Climate atlas of Hungary. Országos Meteorológiai Szolgálat. 1–108
Palcsu L., Major Z., Köllő, Z., Papp L. 2010. Using an ultrapure 4He spike in tritium measurements of environmental water samples by the 3He-ingrowth method. Rapid Commun. Mass Spectrom 24, 698–704. https://doi.org/10.1002/rcm.4431
Palcsu L., Gessert A., Túri M., Kovács A., Futó I., Orsovszki J., Puskás-Preszner A., Temovski M., Koltai G. 2021. Long-term time series Of environmental tracers reveal recharge and discharge conditions in shallow karst aquafers in Hungary and Slovakia. Journal of Hydrology: Regional Studies 36, 100858. https://doi.org/10.1016/j.ejrh.2021.100858
Papp L., Palcsu L., Major Z., Rinyu L., Tóth, I. 2012. A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres. Isot. Environ. Healt S.48, 494–511. https://doi.org/10.1080/10256016.2012.679935
Pazdur A. 1988. The relations between carbon isotope composition and apparent age of freshwater tufaceous sediments. Radiocarbon 30, 7–18. https://doi.org/10.1017/ S0033822200043915
Pelikán P. [ed.] 2005. Geology of the Bükk Mountains. Magyar Állami Földtani Intézet. Budapest. pp. 147–177.
Pedley M. 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56, 221–246. https://doi.org/10.1111/j.1365-3091.2008.01012.x
Pentecost A. 2005. Travertine. Springer–Verlag. 460 p. https://doi.org/10.1007/1-4020-3606-X
Rinyu L., Molnár M., Major I., Nagy T., Veres M., Kimák Á., Wacker L., Synal H.A. 2013. Optimization of sealed tube graphitization method for environmental c-14 studies using MICADAS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 270–275. https://doi.org/10.1016/ j.nimb.2012.08.042
Stuiver M., Polach H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3), 355–363. https://doi.org/10.1017/ S0033822200003672
Synal H.A., Stocker M., Suter M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259, 7–13. https://doi.org/10.1016/ j.nimb.2007.01.138
Tombor E. 2017. Study of recent carbon dynamics using isotopic analysis, an example of the Ajándék cave in Pilis (Hungary). MSc Thesis. ELTE. Budapest, p. 84. (In Hungarian)
Vodila G., Palcsu L., Futó I., Szántó Zs. 2011. A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. Journal of Hydrology 400(1-2), 144–153. https://doi.org/10.1016/j.jhydrol.2011.01.030
Wacker L., Bonani G., Friedrich M., Hajdas I., Kromer B., Nemec M., Ruff M., Suter M., Synal H.A., Vockenhuber C. 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52(2), 252–262. https://doi.org/10.1017/ S0033822200045288
Zsilák Gy.L. 1960. Hydrological and hydrogeological study of the Szalajka Valley (Szilvásvárad, Hungary). Hidrológiai Közlöny 1, 58–64. (In Hungarian)
www.ksh.hu – Miskolc időjárási adatai (Weather data of Miskolc) https://www.ksh.hu/stadat_files/kor/hu/kor0075.html
www.gml.noaa.gov – The Data: What 13C Tells Us