Biomechanical Analysis and Modeling of Different Traction Patterns in Adolescent Idiopathic Scoliosis

Authors

DOI:

https://doi.org/10.14232/analecta.2024.3.88-100

Keywords:

Finite element, Adolescent idiopathic scoliosis, Lumbar stress, Traction methods, Multi-point traction

Abstract

Objective: Traction is a valuable treatment for Adolescent idiopathic scoliosis; however, assessing its biomechanical effects, particularly with new methods, presents challenges. This study aims to explore the biomechanics using finite element analysis, with the goal of enhancing safety and effectiveness. Methods: Based on CT images, two different boundary and loads were applied to simulate two traction methods. The effects of these two traction methods on stress and deformation of lumbar vertebral bodies and intervertebral discs were compared. Results: Under two traction methods, the stress was concentrated on the posterior side. Multi-point traction resulted in higher stress and deformation, and concentrated stress on the convex side as well. However, there is some stress concentration on the vertebral arch, which may lead to injury. Conclusion: Compared to longitudinal traction, multi-point traction can better reduce stress on the vertebral bodies and intervertebral discs, focusing the pulling force on the concave side and achieving greater deformation. Multi-point traction might better suit specific patients needing more correction and pressure relief compared to longitudinal traction.

Downloads

Download data is not yet available.

References

Roach JW (1999) Adolescent idiopathic scoliosis. Orthop Clin North Am 30:353-65, vii-viii. doi: 10.1016/s0030-5898(05)70092-4

Kane WJ (1977) Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res:43-6.

Qiu GX (2017) Scoliosis in China: History and Present Status. Chin Med J (Engl) 130:2521-2523. doi: 10.4103/0366-6999.217081

Zheng Y, Dang Y, Wu X, Yang Y, Reinhardt JD, He C and Wong M (2017) Epidemiological study of adolescent idiopathic scoliosis in Eastern China. J Rehabil Med 49:512-519. doi: 10.2340/16501977-2240

Dunn J, Henrikson NB, Morrison CC, Blasi PR, Nguyen M and Lin JS (2018) Screening for Adolescent Idiopathic Scoliosis: Evidence Report and Systematic Review for the US Preventive Services Task Force. Jama 319:173-187. doi: 10.1001/jama.2017.11669

Weinstein SL, Dolan La Fau - Cheng JCY, Cheng Jc Fau - Danielsson A, Danielsson A Fau - Morcuende JA and Morcuende JA Adolescent idiopathic scoliosis.

Weinstein SL, Zavala DC and Ponseti IV (1981) Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am 63:702-12.

Payne WK, 3rd, Ogilvie JW, Resnick MD, Kane RL, Transfeldt EE and Blum RW (1997) Does scoliosis have a psychological impact and does gender make a difference? Spine (Phila Pa 1976) 22:1380-4. doi: 10.1097/00007632-199706150-00017

Zhang L, Zhang Q, Zhang Y, Arthur M, Teo EC, Bíró I and Gu Y (2022) The Effect of Concave-Side Intertransverse Ligament Laxity on the Stress of AIS Lumbar Spine Based on Finite Element Method. Bioengineering (Basel) 9. doi: 10.3390/bioengineering9120724

Bleck EE (1991) Adolescent idiopathic scoliosis. Dev Med Child Neurol 33:167-73. doi: 10.1111/j.1469-8749.1991.tb05097.x

Weinstein SL (2019) The Natural History of Adolescent Idiopathic Scoliosis. J Pediatr Orthop 39:S44-s46. doi: 10.1097/bpo.0000000000001350

Dayer R, Haumont T, Belaieff W and Lascombes P (2013) Idiopathic scoliosis: etiological concepts and hypotheses. J Child Orthop 7:11-6. doi: 10.1007/s11832-012-0458-3

Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, Diers H, Grivas TB, Knott P, Kotwicki T, Lebel A, Marti C, Maruyama T, O'Brien J, Price N, Parent E, Rigo M, Romano M, Stikeleather L, Wynne J and Zaina F (2018) 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord 13:3. doi: 10.1186/s13013-017-0145-8

Chou R and Huffman LH (2007) Nonpharmacologic therapies for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann Intern Med 147:492-504. doi: 10.7326/0003-4819-147-7-200710020-00007

Cheung KM, Kwan EY, Chan KY and Luk KD (2003) A new halo-pelvic apparatus. Spine (Phila Pa 1976) 28:305-8. doi: 10.1097/01.Brs.0000042322.78033.32

Huang MJ and Lenke LG (2001) Scoliosis and severe pelvic obliquity in a patient with cerebral palsy: surgical treatment utilizing halo-femoral traction. Spine (Phila Pa 1976) 26:2168-70. doi: 10.1097/00007632-200110010-00026

Tadano S, Tanabe H, Arai S, Fujino K, Doi T and Akai M (2019) Lumbar mechanical traction: a biomechanical assessment of change at the lumbar spine. BMC Musculoskelet Disord 20:155. doi: 10.1186/s12891-019-2545-9

Negrini S, Hresko TM, O'Brien JP and Price N (2015) Recommendations for research studies on treatment of idiopathic scoliosis: Consensus 2014 between SOSORT and SRS non-operative management committee. Scoliosis 10:8. doi: 10.1186/s13013-014-0025-4

Zhang Z, Li Y, Liao Z and Liu W (2016) [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 33:1196-202.

Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ and Kuppa S (2000) Biomechanical study of pediatric human cervical spine: a finite element approach. J Biomech Eng 122:60-71. doi: 10.1115/1.429628

Cardoso L, Khadka N, Dmochowski JP, Meneses E, Lee K, Kim S, Jin Y and Bikson M (2022) Computational modeling of posteroanterior lumbar traction by an automated massage bed: predicting intervertebral disc stresses and deformation. Front Rehabil Sci 3:931274. doi: 10.3389/fresc.2022.931274

Wang S, Wang L, Wang Y, Du C, Zhang M and Fan Y (2017) Biomechanical analysis of combining head-down tilt traction with vibration for different grades of degeneration of the lumbar spine. Med Eng Phys 39:83-93. doi: 10.1016/j.medengphy.2016.10.004

Kamal Z and Rouhi G (2020) Stress distribution changes in growth plates of a trunk with adolescent idiopathic scoliosis following unilateral muscle paralysis: A hybrid musculoskeletal and finite element model. J Biomech 111:109997. doi: 10.1016/j.jbiomech.2020.109997

Herrera A, Ibarz E, Cegoñino J, Lobo-Escolar A, Puértolas S, López E, Mateo J and Gracia L (2012) Applications of finite element simulation in orthopedic and trauma surgery. World J Orthop 3:25-41. doi: 10.5312/wjo.v3.i4.25

Lee CH, Heo SJ and Park SH (2021) The Real Time Geometric Effect of a Lordotic Curve-Controlled Spinal Traction Device: A Randomized Cross Over Study. Healthcare (Basel) 9. doi: 10.3390/healthcare9020125

Ozturk B, Gunduz OH, Ozoran K and Bostanoglu S (2006) Effect of continuous lumbar traction on the size of herniated disc material in lumbar disc herniation. Rheumatol Int 26:622-6. doi: 10.1007/s00296-005-0035-x

Gómez FS, Lorza RL, Bobadilla MC and García RE (2017) Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method. Materials (Basel) 10. doi: 10.3390/ma10101116

Goel VK, Kong W, Han JS, Weinstein JN and Gilbertson LG (1993) A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine (Phila Pa 1976) 18:1531-41.

Zheng J, Yang Y, Lou S, Zhang D and Liao S (2015) Construction and validation of a three-dimensional finite element model of degenerative scoliosis. J Orthop Surg Res 10:189. doi: 10.1186/s13018-015-0334-1

Rinella A, Lenke L, Whitaker C, Kim Y, Park SS, Peelle M, Edwards C, 2nd and Bridwell K (2005) Perioperative halo-gravity traction in the treatment of severe scoliosis and kyphosis. Spine (Phila Pa 1976) 30:475-82. doi: 10.1097/01.brs.0000153707.80497.a2

Mac-Thiong JM, Petit Y, Aubin CE, Delorme S, Dansereau J and Labelle H (2004) Biomechanical evaluation of the Boston brace system for the treatment of adolescent idiopathic scoliosis: relationship between strap tension and brace interface forces. Spine (Phila Pa 1976) 29:26-32. doi: 10.1097/01.Brs.0000103943.25412.E9

Shirazi-Adl A, Ahmed AM and Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa 1976) 11:914-27. doi: 10.1097/00007632-198611000-00012

Yamamoto I, Panjabi MM, Crisco T and Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 14:1256-60. doi: 10.1097/00007632-198911000-00020

Xiao Z, Wang L, Gong H and Zhu D (2012) Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomed Eng Online 11:31. doi: 10.1186/1475-925x-11-31

Heth JA, Hitchon PW, Goel VK, Rogge TN, Drake JS and Torner JC (2001) A biomechanical comparison between anterior and transverse interbody fusion cages. Spine (Phila Pa 1976) 26:E261-7. doi: 10.1097/00007632-200106150-00012

Adams MA, McNally DS, Wagstaff J and Goodship AE (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure? Eur Spine J 1:214-21. doi: 10.1007/bf00298362

Acar N (2017) Behavior of Injured Lamina in Lumbar Burst Fractures during Reduction Maneuvers: A Biomechanical Study. Asian Spine J 11:507-512. doi: 10.4184/asj.2017.11.4.507

Nepple JJ and Lenke LG (2009) Severe idiopathic scoliosis with respiratory insufficiency treated with preoperative traction and staged anteroposterior spinal fusion with a 2-level apical vertebrectomy. Spine J 9:e9-e13. doi: 10.1016/j.spinee.2009.01.009

Ge T, Hu B, Zhang Q, Xiao J, Wu X and Xia D (2023) Biomechanical Evaluation of Two-Level Oblique Lumbar Interbody Fusion Combined With Posterior Four-Screw Fixation: A Finite Element Analysis. Clinical Neurology and Neurosurgery:107597.

Zhang Q, Zhang Y, Huang J, Teo EC and Gu Y (2022) Effect of Displacement Degree of Distal Chevron Osteotomy on Metatarsal Stress: A Finite Element Method. Biology (Basel) 11. doi: 10.3390/biology11010127

Downloads

Published

2024-10-28

How to Cite

Zhang, Q., & Bíró, I. (2024). Biomechanical Analysis and Modeling of Different Traction Patterns in Adolescent Idiopathic Scoliosis. Analecta Technica Szegedinensia, 18(3), 88–100. https://doi.org/10.14232/analecta.2024.3.88-100

Issue

Section

Articles