The Impact of Hydrogen on the Integrity of Natural Gas Transporting Pipelines

Main Article Content

János Lukács

Abstract

As demand for hydrogen increases worldwide, consequently does the need to transport it. Pipeline transport is an economical and efficient form of transport. Given that, at the same time, the utilisation of the natural gas transmission network is forecast to decrease, it is logical to aim to use the system for transport of hydrogen-containing media. As a first step, hydrogen blending into natural gas could be a viable option. The aim of this publication is twofold: firstly, to provide an outline of the issues involved in hydrogen blending into the natural gas network and, secondly, to highlight the challenges involved, using the example of a steel pipe material quality. The challenges associated with blending, the damage modes caused by hydrogen, their impact on pipeline integrity and the current hydrogen blending practices will be summarized. Using a typical pipeline steel grade (X52) as an example, the variation of basic mechanical properties in hydrogen and brine media will be illustrated. The acquired experience highlights the importance of respecting the principle of gradualism and the need to take account of local specificities.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lukács, János. 2023. “The Impact of Hydrogen on the Integrity of Natural Gas Transporting Pipelines”. Jelenkori Társadalmi és Gazdasági Folyamatok 18 (Különszám):271-86. https://doi.org/10.14232/jtgf.2023.kulonszam.271-286.
Section
Articles
Author Biography

János Lukács, Miskolci Egyetem

egyetemi tanár

References

Alhussein, A., Capelle, J., Gilgert, J., Dominiak, S., Azari, Z. (2011): Influence of sandblasting and hydrogen on tensile and fatigue properties of pipeline API 5L X52 steel. International Journal of Hydrogen Energy, 36 (3): 2291–2301. https://doi.org/10.1016/j.ijhydene.2010.11.081

Anon. (2021a): Net Zero by 2050 – A Roadmap for the Global Energy Sector. 4th revision, International Energy Agency. <https://www.iea.org/reports/net-zero-by-2050> (2023.02.24.)

Anon. (2021b): Hydrogen on the horizon: ready, almost set, go? Working Paper National Hydrogen Strategies World Energy Council, in collaboration with EPRI and PwC. <https://www.worldenergy.org/assets/downloads/Working_Paper_-_National_Hydrogen_Strategies_-_September_2021.pdf> (2023.02.24.)

Anon. (2022): Global Hydrogen Review 2022. International Energy Agency. <https://www.iea.org/reports/global-hydrogen-review-2022> (2023.02.24.)

API (2018): API Specification 5L: Line Pipe.

API (2021): API STD 1163: In-line Inspection Systems Qualification Standard.

ASME (2014): ASME B31.12: Hydrogen Piping and Pipelines.

ASME (2020): ASME B31.8S: Managing System Integrity of gas pipelines.

Contreras, A., Salazar, M., Albiter, A., Galván, R., Vega, O. (2011): Assessment of Stress Corrosion Cracking on Pipeline Steels Weldments Used in the Petroleum Industry by Slow Strain Rate Tests. In: Sudnik W. (szerk.): Arc Welding. IntechOpen, London. 127–150. https://doi.org/10.5772/26569

Dakhel, A. Y., Lukács, J. (2021): How to prevent damages of transporting pipeline girth welds? Multidiszciplináris Tudományok, 12 (4): 208–217. https://doi.org/10.35925/j.multi.2021.4.25

EN (2022): EN 17649: Gas infrastructure – Safety Management System (SMS) and Pipeline Integrity Management System (PIMS) – Functional requirements.

Francis, R. A. (2001): Stress Corrosion Cracking And Hydrogen Cracking: Differences Similarities And Confusion. CAP-2001 Paper 052. <https://www.academia.edu/16979884/Stress_Corrosion_Cracking_and_Hydrogen_Cracking_Differences_Similarities_and_Confusion> (2023.02.24.)

Koncsik Zs. (2019). A szerkezetintegritás helye és szerepe az oktatásban és a kutatásban. Mul-tidiszciplináris Tudományok, 9 (4): 63–71. https://doi.org/10.35925/j.multi.2019.4.5

Koncsik Zs. (2021). Szerkezetintegritási kutatások az Innovatív Anyagtechnológiák Tudományos Műhelyben. Multidiszciplináris Tudományok, 11 (2): 372–379. https://doi.org/10.35925/j.multi.2021.2.49

Lukács, J. (2005). Dimensions of lifetime management. Materials Science Forum, 473-474: 361–368. https://doi.org/10.4028/www.scientific.net/MSF.473-474.361

Lukács J., Nagy Gy., Harmati I., Koritárné Fótos R., Kuzselláné Koncsik Zs. (2012): Szemelvények a mérnöki szerkezetek integritása témaköréből. Miskolci Egyetem, Miskolc.

Mahajan, D., Tan, K., Venkatesh, T., Kileti, P., Clayton, C. R. (2022): Hydrogen Blending in Gas Pipeline Networks – A Review. Energies, 15: 3582. https://doi.org/10.3390/en15103582

Michler, T., Naumann, J. (2010): Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. International Journal of Hydrogen Energy, 35 (2): 821–832, https://doi.org/10.1016/j.ijhydene.2009.10.092

Mohtadi-Bonab, M. A. (2019): Effects of Different Parameters on Initiation and Propagation of Stress Corrosion Cracks in Pipeline Steels: A Review. Metals, 9 (5): 590. https://doi.org/10.3390/met9050590

NACE (2010): ANSI/NACE SP0502: Standard Practice Pipeline External Corrosion Direct Assessment Methodology.

NACE (2015): NACE SP0204: Stress Corrosion Cracking (SCC) Direct Assessment Methodology.

NACE (2016): NACE SP0206: Internal Corrosion Direct Assessment Methodology for Pipelines Carrying Normally Dry Natural Gas (DG-ICDA).

Nanninga, N. E., Levy, Y. S., Drexler, E. S., Condon, R. T., Stevenson, A. E., Slifka, A. J. (2012): Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corrosion Science, 59: 1–9, https://doi.org/10.1016/j.corsci.2012.01.028

Nykyforchyn, H., Lunarska, E., Tsyrulnyk, O., Nikiforov, K., Gabetta, G. (2009): Effect of the long-term service of the gas pipeline on the properties of the ferrite–pearlite steel. Materials and Corrosion, 60 (9): 716–725. https://doi.org/10.1002/maco.200805158

POF (2021): POF 100 Standard Practice: Specifications and requirements for in-line inspection of pipelines. <https://pipelineoperators.org/cdn/276341a3-f5e6-49cf-9897-de6ab41bdd5a/POF%20100%20Specifications%20and%20requirements%20for%20ILI%20-%20Nov%202021.pdf> (2023.02.24.)

Slifka, A. J., Drexler, E. S., Nanninga, N. E., Levy, Y. S., McColskey, J. D., Amaro, R. L., Stevenson, A. E. (2014): Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment. Corrosion Science, 78: 313–321. https://doi.org/10.1016/j.corsci.2013.10.014

Staffell, I., Dodds, P. E. (szerk.) (2017): The role of hydrogen and fuel cells in future energy systems. H2FC SUPERGEN, London. <https://www.h2fcsupergen.com/wp-content/uploads/2015/08/J5212_H2FC_Supergen_Energy_Systems_WEB.pdf> (2023.02.24.)

Thodla, R. (N/A): Choosing the best materials to avoid environmentally assisted cracking. <https://www.dnv.com/oilgas/laboratories-test-sites/article/choosing-the-best-materials-to-avoid-environmentally-assisted-cracking.html> (2023.02.24.)

Topolski, K., Reznicek, E. P., Erdener, B. C., San Marchi, C. W., Ronevich, J. A., Fring, L., Simmons, K., Fernandez, O. J. G., Hodge, B.-H., Chung, M. (2022): Hydrogen Blending into Natural Gas Pipeline Infrastructure: Review of the State of Technology. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-81704. https://doi.org/10.2172/1893355

Ustolin, F., Paltrinieri, N., Berto, F. (2020): Loss of integrity of hydrogen technologies: A critical review. International Journal of Hydrogen Energy, 45 (43): 23809–23840. https://doi.org/10.1016/j.ijhydene.2020.06.021